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0. INTRODUCTION

This document summarizes the results of a two-year research effort
on a number of mathematical and numerical issues related to finite elasto-
plasticity. The Principal Investigator of the project was Professor J.T.
Oden of The University of Texas.

The study set out to develop a general theory of finite elastoplasticity
which makes use of standard continuum thermodynamic arguments, but which
does not necessarily involve the assumption of existence of the yield
function, which does not require conventional assumptions of convexity

or differentiability of various functionals, which addresses and resolves

the issue of proper decomposition of elastic and plastic deformation measures,

and which under appropriate additional assumptions reduces to many theories
known to be capable of describing infinitesimal deformations of elasto-
plastic solids. In addition, general forms of representation of elasto-
plastic constitutive equations were sought which would provide some measure
of the effects of micromechanical changes in the constitution of the ma-
terial. Finally, this general theory was used as the basis for the con-
struction of new finite element methods for the calculation of large elasto-
plastic deformations, together with various algorithms and codes in order
to produce numerical solutions of representative problems in this area.

Positive results on each one of the objectives were obtained. In
particular, the following were accomplished:

l. Our theory is a theory of plasticity that does not necessarily
involve the concept of stress: indeed, materials are fully characterized
in a way consistent with thermodynamics by two stress potentials: the
free energy functional and the generalized flow potential.

2. The theory can produce as special cases all of the classical theories
of plasticity and hyper-elasticity. Yet it does not require the introduc-

tion of a yield function, nor does it necessarily involve assumptions
of a normality rule of convexity.
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3. The notion of the Clark/Rockafellar generalized sub-differential
is used to provide a broad generalization of classical potential theory
and make the potential arguments applicable to non-differential non-convex
potentials. Isotropic function theory is used to further specialize accept-
able forms of these functionals.

4. A correct kinematics of finite elastoplastic deformations has
been produced, we believe for the first time. This involves the use of
the polar decomposition theorem and a mathematically correct definition
of the so-called stress-relaxed referenced state.

5. Since a correct kinematics is developed and potentials are used,
the formulation make unnecessary the traditional difficulties of defining
a correct, objective stress rate.

6. A new collection of numerical algorithms has been developed based
on this theory. These have been developed in connection with finite element
models of finite elastoplastic behavior. A working computer code has been
developed and several example problems have been solved. While the code
is primarily a plane strain code which employs bilinear quadrilateral
elements, it has been used to solve a number of problems in finite deforma-
tion plasticity and elasticity and results are consistent with those ob-
tained by other methods for special cases.

0.2 Publications

The following papers were published as a result of the reported work:

1. "Generalized Potentials in Finite Elastoplasticity," by S.J. Kim and
J.T. Oden, International Journal of Engineering Science, Vol. 22, No.
11/12, 1984, pp. 1235-1257.

2. "Generalized Flow Potentials in Finite Elastoplasticity -- I1I. Examples,"
by S.J. Kim and J.T. Oden, International Journal of Engineering Science,
Vol. 23, No. 5, 1985, pp. 515~530.

3. "Finite Element Analysis of a Class of Problems in Finite Elastoplasti-
city Based on the Thermodynamical Theory of Materials of Type-N," by S.J.
o Kim and J.T. Oden, Computer Methods in Applied Mechanics and Engineering,
L (in press).

:;f} 4. "KABOD-A Finite Element Program for Large Elastoplastic Deformations
F.’G Based on Generalized Flow Potentials,” by S.J. Kim, TICOM Report 85-7,
. Austin, Texas, 1985.

5. "Theory of Finite Elastoplasticity,”" by S.J. Kim, TICOM Report 85-6,
Austin, Texas, 1985.
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degree in May, 1985.

3, Tsung-L. Lin, Philippe Devloo, L. Demkowicz, J. Bass, and Luis .
Faria provided a small portion of their time during various phases of ]
the project. ]

0.4 Technical Discussion

b - A summary of most of the major results is given in the remainder of

Andndeiesiiinenaud I A

this report. These results include the development of kinematical relation-

ships, the notion of generalized potentials and their thermodynamic conse-

quences, representation results for flow potentials, finite element approxi-

mations, algorithms, and numerical results, some results on actual labora-
tory experiments and their correlation with the numerical solutions, and

suggestions for future research.
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CHAPTER 1
[ - INTRODUCTION
p 1.1 Introductory Comments
.
B Classical plasticity theory is, in many ways, a product
H- of inductive thought, growing as it did from attempts to model
r -
SiE observed behavior of metals and soils under loading histories
ﬁ'f sufficient to create permanent deformaton. This approach toward
h the development of a mechanical theory is quite different from
the deductive methods of modern continuum mechanics, where the
o framework for theories of material behavior is derived in a semi-
axiomatic way from a small collection of universal postulates

(laws of physics).

Over the last fifteen years, there have been numerous attempts
to provide a thermodynamic basis for a plasticity theory sufficiently
general to accommodate finite deformations but, at the same time,

not inconsistent with either continuum thermodynamics or classical

plasticity. While this volume of literature is too large to

e

!' be adequately referenced here, we mention as significant examples,
t the works of GREEN and NAGHDI (1965]), COLEMAN and GURTIN (1967],

i

{ VALANIS [1971], ERINGEN [1962], LEE {1969, 1981), NEMAT-NASSER
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{1979, 1982], HALPHEN and NGUYEN [1975], BHANDARI and ODEN (1973,
1975], RICE [1971], HAVNER and HILL {1982], and HAVNER [1982];

for more recent work and a more complete list of references in

this general area, the proceedings edited by LEE and MALLET [1982],
DESAI and GALLAGHER [1983], NEMAT-NASSER et. al [1984] and WILLAM
[1984] can be consulted.

There are several fundamental features of classical plasticity
that are particularly difficult to generalize in a way compatible
with modern continuum mechanics: the basic kinematical descriptions
such as the decompositions of strain and strain-rate measures
into distinct elastic and plastic parts; an appropriate definition
of stress rate; the existence of a yield function as distinct
from the usual collection of constitutive equations required
to characterize material behavior; so-called normality conditions;
etc. In addition, one hopes that a theory which does capture
and generalize these features will be capable of modeling aspects
of the behavior of real materials which fall outside the realm
of the classical theory, that it will be consistent with continuum
thermodynamics, and that it will be of a form that lends itself
to numerical approximation.

This report presents the development of a general theory
of elastoplastic materials, which includes infinitesimal elastoplas-

ticity as a special case, and which addresses and resolves each of
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ZE the difficulties mentioned above. In addition, particular special
: cases of the theory are considered which provide meaningful general-
;Ei izations of classical elasticity and plasticity to cases of practical
';é importance. In addition, a study of finite element approximations
y of the governing equations is given, together with new numerical
Ef algorithms and applications to representative problems.
- .
- 1.2 Objectives and Scope
:: The first aim of this study is to develop a general theory
= of finite elastoplasticity which makes use of standard continuum
‘;: thermodynamic arguments, does not necessarily involve the assump- ,
i%' tion of the existence of a yield function, does not require assump-
':E: tions of convexity or differentiability of various functionals,
'fg addresses and resolves the issue of proper decomposition of various
5&5 "elastic'" and "plastic" deformation measures in a consistent way,
B .
}*g and which, under appropriate additional assumptions, reduces to
many theories known tc be capable of describing infinitesimal
deformations of elastoplastic solids.
Secondly, a general form of representation of the elastoplastic
| constitutive relations is sought which provides for some measure
{{Z of the effects of micromechanical changes in the constitution of
;{; the material. This is provided for by regarding the principal .
:
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constitutive functional as dependent on internal state variables
in addition to appropriate kinematical and thermal measures.

Thirdly, we wish to demonstrate that the theory lends itself
to numerical approximation. Toward this goal, finite element
approximations of the governing equations are derived along with
a collection of new algorithms for treating large-deformation
elastoplasticity problems. A code implementing these algorithms
was developed for the Harris 800 supermini-computer, and used
to test the algorithms on a number of representative example
problems.

Finally, we wish to develop consistent finite element methods
for the approximation of the equations and inequalities governing
the general theory, together with new algorithms for the numerical
analysis of representative problems.

We note that this list of objectives is a broad one, encom-
passing not only the creation of a new theory but also new numerical
methods and actual applicatons to representative problems. In
general, applications of such a general theory to concrete problems
is impossible without some information on the specific form of
constitutive equations and accompanying experimental data obtained
from tests on actual materials. To provide this information
for the problem studied analytically and numerically here, we

construct slight generalizations of some flow potential functionals
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proposed by BODNER and PARTOM [1972, 1975]. These data were
then used in the determinaton of necessary material constants.

This report is divided into six chapters.

In Chapter 2, following this Introduction; mathematical

and mechanical preliminaries are given. The principal mathematical
machinery needed for the general techniques we employ is the

theory of non-convex optimization and generalized subdifferentials
advanced by CLARKE (1973, 1976, 1977] and ROCKAFELLAR [1979, 1980].
PANAGIOTOPOULOUS [1982, 1985] observed that these ideas had applicaton
to certain plasticity problems. We outline the key mathematical
concepts in Chapter 2 and provide a brief review of relevant }
ideas from non-convex analysis in an Appendix. Some essential '1

micromechanical features of materials relevant to plasticity y

theories for metals are also reviewed with some interpretations
of appropriate internal state variables.
In Chapter 3, the ideas and concepts introduced in Chapter
2 are used in the formal study of thermodynamic restrictions
on the form of constitutive functions characerizing a general
class of materials which we call "Materials of Type N", since
they involve a generalized "normality" condition. A close examinaton
of the kinematical variables and a proposal of new alternative
kinematical measures of deformaton and deformaton rate are also

presented. ..
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In Chapter 4, general representations of free energy and

flow potentials are developed. It is shown that classical theories
of elastoplasticity can be recovered from our theory as special
cases.

As an application of the theory, specific forms of the free
energy and flow potential functionals are presented which are
inspired by results of BODNER and PARTOM (1972, 1975]. To demonstrate
the feasibility of our theory and show how to determine the material
constants for our generalized Bodner-Partom material, actual
physical tension tests were performed. A numerical scheme for
using such sample experiments to determine material constants
is also presented and discussed.

The finite element approximation of the governing equations
is taken up in Chapter 5, where an incremental, total Lagrangian
algorithm is described. Specific applications are also considered,
including the numerical analysis of large-strain uniaxial stretching
and compressing of a specimen and the crushing (upsetting) of
rectangular billet in a metal forming simulation.

Among the new and special features of our results are the
following:

Technically, our continuum theory does not require
a concept of stress. The mechanical response of this class of

materials (excluding heat flux) is completely characterized by
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two potentials, the free energy and the flow potential, and only
subgradients of these functionals appear in the equations of
motion.

The potentials which play a predominant role in our

formulation are true potentials only in a very generalized sense,

made precise in Chapter 3; the potential functionals need not be

convex nor need they be differentiable.
It is not necessary to assume the existence of a yield
functon in order to describe yielding and elastoplastic deformation;

however, if a yield function is known for a given class of materials,

bt A

corresponding flow potentials can be constructed in a straight-

forward manner.

The various plasticity theories derivable from our
general formulation are not necessarily "incremental' nor "rate-tpe"
theories in the usual sense. This fact opens the door to several
new families of numerical methods for solving finite deformation
plasticity problems. We develop one such family of new schemes

here and apply it to representative examples.
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e PRELIMINARIES
s
X In this chapter, several mathematical notions prerequisite to our
‘:f study and certain mechanical concepts on plastic deformation are pre-
sented.
f:. 2,1 Mathematical Preliminaries and Non-Convex Analysis !
- We begin with a summary of some recent results on non-convex
Z}' analysis which follows the ideas of CLARKE [1973] and ROCKAFELLAR
N
> [1980]. Unless noted otherwise, V denotes a topological vector
space, V* the topological dual of V , and <',£> a duvuality pairing \
:f on V¥ x V.,

2.1.1 Contingent and Tangent Cones

Pl SRR

Let K be a nonempty subset of a topologital vector space V .

~

[ Then the contingent cone to K at a point u € K is defined as the

> ‘
i set

- 1

- C, (u) = lim sup = (K-u) (2.1)

.-f Likewise, the tangent cone to K at u is defined as the set

tL{'

D

TK(u) = 1im inf %[K-u']

]
P

(2.2)

A

tack BN oL 2 Ko nak i s bindnlinsnil

- u' +u
5 u' € K
> 8 + ot
i; -11-
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To interpret the notation used in (2.1) and (2.2), we use the
concept of a limit superior (inferior)of a multifunction defined on
a topological vector space given in the Appendix. Let I be a set-

valued function from [0 ,») x K into V such that

r(e,u) E-%(K -w)={vev|v =-%(w-u), (2.3)
w€K, 8€[0,9]}

Then
CK(u) = 1lim sup I'(8,u)
8 + ot
= m U (T(8,u) +A] (2.4)
A € N(O) 0 € (0,
A>0
and

TK(u) = 1lim inf T(8,u')
u'-u
6o

= /\ U /\ [T(e,u') +A]l (2.5)

A € N(O) B € N(u) u'€ K B
A>0 8 €(0,A)

where N(0) and N(u) denote collections of neighborhoods of 0

and u, respectively.

To visualize CK(u) and Tx(u), we note that for KCR

Celu) = {v € R |3 e, * 0% v

ML
such that u + Sk Vi € K} (2.6)

O
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N
TK(E) = {ve R |b/9k - ot, U Ty,

-~

u €K,9 V> vuwithu +86 v €K 2.7)

A two-dimensional case is illustrated in Fig.2.1. Suppose u
terminates at a cusp in a non-convex set K , as shown. The entire
plane can be represented as the union of four cones with vertex
u: BOD, DOC, COA, and AOB, with O the terminix of u . Clearly, for
any point M inside the conme BOD {J DOC |JCOA, it is always possible
to find a sequence of positive numbers {Gk} such that u + €, v, € K

of any sequence v, + v . OQOutside of this cone (interior to AOB), it

-~

is impossible to find {Bk} for which u + 8, v, € K. Hence,

CK(‘i) = BOD ) DOC y AOB

Similarly, pick a sequence u, +- u where u is a sequence of

k ~k

vectors tracing out the arc EO on K . The legitimate vectors v

-~

with sequences Ve V such that u_ + Bk v. € K as ek + 0 will

be those in the half space BOD\ DOC . Similarly, for up approach-
ing u along FO, we must choose v in DOC U COA . All other se-
quences u, €K, YU

half spaces. Thus, TK(u) must represent the intersection:

+ u yield acceptable v in either of these

-~

TK(E) = DOC
If K 1is convex, thken

TK(g) = CK(L:)
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2.1.2 Nommal Cone
For KC V, K# @, the normal cone to K at u is a subset

of the dual space V* defined by
N @) = {u* € v*[Cu*,vd <0 Vv ¢ T ()} (2.8)

In two dimensions, NK(_u), consists of the vectors through u
which make obtuse angles with the vectors in TK(u) , as shown in

Fig. 2.2.

2.1.3 CLark-Rockafellarn Derivatives

Let F be any extended real-valued funcrion defined on V and
let F be finite at a point u € V . Then varions types of subde-
rivatives of F at u can be defined as follows.

* Uppern Subderivative, The upper subderivative of F at u

in direction v 1is defined as

D4F(ujv) = Lim sup inf %[F(u'+6v')-a] (2.9)
W', ) +v@,Fu)),v'»v ~

8+ o+

The notation Lim sup inf is defined in the Appendix, and by the no-

tation
(uja) + (u,F(u))

we signify the convergence of a sequence (u',d) € epi F to a point

on the graph of F :

vvr-r‘—wT
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Figure 2.2 Normal and tangent cones at points of a set K.
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N - (u',0) ¥ Q,FQu))<=>(u',a) + (u,F(uv)),

|
a > F(u") ‘
|
\

If F is l.s.c. (lower semicontinuous) at u , then (2.8) re-

duces to |
|
|
D4+ F(u;v) = Lim sup inf %[F(u'+ev')-l~'(u')] |
',Fu') > (u,F(u)} v*+ v (2.10)
g+0+

* Lowern Subderivative. The lower subderivative of F at u

in direction v is defined by

‘L‘ . DYF(u,v) =  Lim inf sup %[F(u' - (2.11) ‘
o (u',a) * (u.F(u)), vHv |
6 » ot |

|

- with i
o |
:E::: (w',a) ¢+ (u,F(u))<=>@",a) » (u,F(u)) 1
-«'t: i
- Q _< F(_U') |

|
e If F {s u.s.c. at u , |

'

o D+F(usv) = Lim inf sup —1[F(u' +6v")-F(u') 1(2.12) |
’- (w',F(u')) - (u,F(u)), v'> v

8 » ot

:Tfh The derivatives D*F(u;v), D¥F(u;v) are referred to here as Clarke-

?.'.:‘-' Rockafellar derivatives (or C/R-derivatives for brevity).

To help understand the meaning of the C/R-derivatives, we con-

sider the two examples shown in Figs. 2.3 and 2.4.
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Example 1. Let fl and f2 denote the real-valued functions,

x% — 4x + 4 x <1
fl(x) =
~x"/2 +2x -1/2 , x>1

and

x2—4x+1 x <1

x"/2 +2x +3/2 , x >

A\
—

aatndundechdh s Iedosdoo a’ xon aralbnd boo s

As we observe in Fig.2.3, fl(xl is continuous at . =1 but non-
differentiable in classical sense and fz(x) is discontinuous but i
lower semicontinuous at x = 1 , Since these functions are defined K

on R , the definition of C/R-derivatives reduces to

.'L._h' Ao

Drf(x;y) = lim sup -%[F(x' + By) - F(x")] _

(x',f(x"))  (x,£(x)) g

8 -0 :

p

o

and ]

DA (x3y) = lim inf %{F(x' +8y) - F(x")] )

(x',£(x")) > (x £(x)) ]

6 ~ ot -

Around x = 1 , we have two subsequences of derivatives with y=1 ;

<

which converges to 1 and -2 for both fl and f2 and we easily i
conclude that

NPT N

]
[

fol(l;l) (= "sup{l,-2}")

foz(l;l)
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Figure 2.3 The upper (lower) subderivatives of (a) continuous but
nondifferentiable and (b) discontinuous at x = 1.
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‘ D+f1(l;l) = =2
- D¥E, (131) = -2
A We remark that the convergence (x',a) ¥ (x,f(x)) in the definition
" of C/R-derivatives (2.8) and the definition of tangent cone (2.2)
;: lead to the fact that the epigraph of the function y +» D4f(x;y) is
- the tangent cone Tepi £ (x,£f(x)) which is shown in Fig. 2.3a
- Example 2, A better example of C/R-derivatives can be construc-
ted in 'Rz. Consider the lower semicontinuous function f = f(x,y)
shown in Fig.2.4. The numbers indicated in the figure are intended
to mean the following:
. * The slope of line GH at G in the direction v = (1,0) is +0.5
: * The slope of line EF at F in the direction v = (1,0) is -0.5
3 * The slope of line CD at C in the direction v = (1,0) is -0.8
- * The slope of line AB at B in the direction v = (1.0) is +0.2
e Let us calculate C/R-derivative at the origin u = (0,0) with dir- J
. ection v = (1,0). Recall that |
% D4£((0,0);(1,0)) = Lim sup inf 2
- (u',F(u")) » ((0,0),£(0,0)) v'=+v 4
- ~ 8 - 0+ - ]
' G+ v)-£u") R
N Along the direction of v = (1,0) , we choose two sequences approach- :?
- >
Y ing u = (0,0) from either positive or negative x-axis: 4
~ ~ -]
i %
-
3
3t
A Ay A TR SV ST :




Filu)=f(x,y)
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D Figure 2.4 The upper (lower) subderivative of the lower semi-
continuous function F(u).

. . T L. . ca
STy ,‘.r:‘..'_ R Ve e :
PP AP AN . el e e
et T ) )N T - L te e =
PP ST VDY A0 S S PPN VP TOAY ST S T T




~r

A

rhrie do B
W,

T
VS
PP

A
~ @l

(o B AN RCANLR
St W T
v e e

Nt

Lim inf Df(u',v') taken from the positive side of x-axis will be a
v' > v DA

-~ ~

sequence of slopes along EF and Lim inf Df(u',v') taken from the
v+ v

negative side of x-axis will be the slopes along DC, where Df(u',v') K

= %ﬁf(u' + 6v') - f(u')]. Next we take lim sup fb
- - (u',£(")) + ((0,0),£(0,0)) S

o

3

of the sequences of slopes and then finally the slope at F along the
curve EF as Dt£((0,0);(1,0)). Similarly, we can get
D+£((0,0);(1,0)) = the slope at B along AB.
Quantitatively
D4+£((0,0);(1,0)) = ~.5

and

DYE((0,0);(1,0)) = +.2 - ¥

2.1.4 Generalized Subdifgerentials

The subdifferential 5F(u) of a function F at u is a well known

concept in convex analysis (see e.g., EKERLAND and TEMAM [1976] or

ODEN [1985]}). By using the subderivatives defined in (2.8) and (2.10),
we define the generalized subdifferential of F:V + R, at a point u
where F(u) is finite, as the set

OF(u) = {u* € V*| C(u*,v) <DtF(usv) WV ve v} (2.13)
Now we list two useful theorems due to ROCKAFELLAR [1980].

Theorem 2.1. Let F be any extended real-valued function on V,
and let u be any point at which F is finite. Then 3F is a weak*-

closed convex subset of V* and

.
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OF(u) = {u* € V* | (u*,-1) € NepiF(u,F(u))} (2.14)

If D4F(u;0) = -, then JF(u) is empty, but otherwise TF(u) is
nonempty and

D4F(u;v) = sup {{u*,v) | u* € TF(u)}for all v € V (2.15)

Theorem 2.2. If F is a convex function on V, then oF(u) agrees
with the subgradient set in the sense of convex analysis:
OF(u) = 9F(u)
= tu*x € W | Cur,v) < F'(u;v), Vv € v}
(2.16)
= {u*€ V* | (v-u,v*)< F(u)-F(u) YV ve v}

Here F'(ujv) = 112 (F(u+tv) - F(u))/t is called the one-sided direc-
t+0

tional derivative which exists for all v when F is convex (although it
may be infinite).
Remark. If F(u) 1s a characteristic function with respect to

a set K, {.e., if

0 ifu¢k
Flu) = yp(u) =
+o if u €K
then
TF(u) = {u*€ Vx| Cu*,v) < DY (u3v) v € v} (2.17)

= NK(u)

This fact can be more easily visualized in the case of convex F, i.e.,

Lo, o RN et P RN
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Ay u) = {ur € V& |Cu¥, v-u)
f_wK(v) - u‘/K(U), YV v € K}
= {u* € V¥ [(u*, v-u)< 0,%v € K:

= {
Nl( (u)

since lpK(v) = wK(u) = 0,

2.2 Mechanical Preliminaries

2.2.1 Classical Continuum PLasticity

Classical plasticity theory rests on the assumption of the

existence of a convex function F: M= IR3 X ]R3 -+ [0,-= ) of the

stress tensor Ty called the yield function of the material, which

has the property that plastic flow at a particle X of the material is
signaled whenever F(g (X)) = 0 and % :éio; otherwise the deformation
at X is elastic (where A:B = tr ATB):

F(o®)) <O )
- SF o elastic deformation
F(o (X))= Oand-gz g<0 (2.18)

-~

F(og (X))= 0 and % : 0>0=> plastic flow

-~

The only stress states admissible in such theories are those for
which F(0) <0 or, equivalently, those stresses which belong to the

convex set

K-{gfm! F(g)f_O} (2.19)

In general, the yield function may 1tain several parameters

characterizing the state of material, but during plastic deformation
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these parameters are understood to change in such a way that F
remains equal to zero while plastic flow continues., These material
parameters will also be expected to vary with temperature or other
thermodynamic variables, The general yield condition relates only
to the state of stress at a material particle, and, irrespective

of whether the mechanical response is elastic or plastic, does not
depend on the stress gradients.

It is further assumed in the classical theory of plasticity
that yield is unaffected by hydrostatic stress, a situation generally
in accord with experiment for moderate stress levels. With this
assumption it is possible to represent the yield function for an
isotropic material as a function of the invariants of the stress
deviator in the form

F(g) = F (JZ,J3) (2.20)

Where the invariants

J, = 1/2 tr (o')z, J, = det o' with g'= 0-1/3 tr 0 (2.21)

3
(More detailed discussions of representations of response functions
are given in Chapter IV.)

The infinitesimal strain tensor € is representable as the
sum of an elastic part gf and a plastic strain gf, and its time

rate-of-change is

e , *P (2.22)

+

1M
tMe
M
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It is meaningful to assume the existence of a plastic flow
potential ¥ : ™M »R which is convex and l.s.c. and which has the
property that
- €” €3 ¥(0) (2.23)
h In particular, the indicator function wl( of the set K may define a

specific flow potential as follows:

V(o = {0 et (2.24)
+ » if g/( K

.
h Note that wl( is 1l.s.c. on IM and that wl( is convex if F is convex.
&

:;Z: From (2.23) and the definition of the subdifferential

FE€d U (T) (2.25)

for some particular stress 0 , and this implies that

(e P a-5>20 yaek (2.26)

~

This result, of course, is the classical normality condition which
extablishes that the strain rate is normal to the yield surface or
lies in the normal cone of the yield surface at corners. (See Fig.

2.5).

- 2.2.2 Micromechanical PLasticity
It is now a well-known fact that the permanent deformation of

crystalline material is caused by microscopic defects in the

-
(]

crystalline structures. A brief review of some features of these

underlying physical phenomena is useful at this point. For a
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Figure 2.5 A convex yield surface and normality condition
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detailed treatment, COTTRELL [1958], WEERTMAN and WEERTMAN [1964], !

and LARDNER [1974] can be consulted. .
i
When most materials solidify from a melt, the constituent atoms i
e arrange themselves in a highly regular periodic array called a :
f§3 crystal. They do this simply because the total energy, kinetic and g
h potential, of the individual atoms, is less when the atoms are i

arranged in a coordinated manner than when they are randomly

distributed. This energy minimum changes for different atomic

o _rimr =

constituents, so that the stable crystal structure formed during
solidification vary for each material. The exact nature of the

structure is determined by the strength and directionality of the

interatomic forces. )
A high degree of geometrical perfection in crystals is rarely
found in either natural or synthetic crystals. In all real |
materials, crystals contain a small number of atomic irregular-
ities or imperfectionswhichdo little to change the normal atomic
arrangement but play an important role in mcdifying its physical

properties. The defects of most importance in determining physical

MM R A AR A A A ~m o A a e

behavior are dislocations, point defects, and the structure of grain

and phase boundaries.
The dislocations act as the carriers of plastic deformation
through the motion of slip, and produce most of the noticeable changes

of the internal mechanical state during the deformation. Point

B Y ol R BT B RV R SRS A SRR S

A . AR MLt e L




defects, such as vacancies and solute atoms of a different species

usually introduce a strong viscous effect into the deformation
behavior. Finally, the structure of the grain and phase boundaries
not only can increase the resistance against plastic flow but they
can also be additional sources of viscous behavior.

For a perfect single crystalline material, one would expect
elastic-perfectly-plastic response because when the shearing stress
reaches some critical value it causes a continuous slipping motion as
there are no obstacles which may interrupt or stop the shearing motion.
But, as mentioned earlier, most materials do have barriers like
grain boundaries, Frank networks, stationary substructures, etc. To
break these barriers, the critical stress (or, phenomenologically, the
yield stress) must be attained. This increased stress produces more
barriers and again, an increased stress is required to break dis-

location barriers, and so on. This phenomenon is called work-

hardening.

Generally, in single crystalline models, we have four distinct
stages in the stress-strain curve,as seen in Fig. 2.6. After an
elastic stage, one often observes an "easy-glide" stage (Stage I in e
the figure) during which all the free (mobile) dislocations move and

a large amount of plastic strain is realized. Stage II is called the

S N SR

work-hardening stage, and unit dislocations are generated from, say,

Frank-Read sources and interactions between dislocations making

Al A

barriers like Lomer-Cottrell locks. In Stage III, breakdowns of

et SR
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Figure 2.6 Stress-strain curve of single crystal material
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these barriers may occur, giving very low hardening with some plastic
strain. For more detailed descriptions of these concepts, see

DIETER [1976] or WILKOV [1983].

In polycrystalline materials, the easy glide stage is not
observed as frequently as in the single crystal since the movements of
dislocations are stopped more readily by a large density of built-in
obstacles due to the nature of the grain boundaries. Therefore the
usual stress-strain curve (Fig. 2.7), i.e., a linear elastic region
and a strain hardening region, is obtained. In fact, the easy glide
stage is included in the elastic region since the flow of dislocation

and plastic strains are ignorable.

2.2.3 Intennal State Varniables

From the previous section, we recognize that changes of
internal structures in materials causes permanent deformations. A
key question is how can one utilize this micromechanical information
in formulating a continuum theory of elasto-plasticity. One approach,
which has provided for some progress toward a general theory, involves
the use of continuum theories whichemploy "hidden variables" or
"internal state variables" as a measure of physical changes in the
microstructure. Some of these changes canbe those ordinarily
associated with plastic deformation. These so-called internal state

variables can provide measures of slip rearrangements of crystall-

ographic planes through dislocation motions, inelastic behavior
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arising from twinning in crystals, grain boundary sliding, and

stress-induced phase transformations.

The idea of developing a continuum theory of thermodynamics

using internal state variables was actually proposed by MEIXNER

[1953] and independently by BIOT [1954). A general thermomechanical
theory of materials with internal state variables was developed by
COLEMAN and GURTIN [1967) and used in attempts by PERZYNA [1963],
PERZYNA and WOJNO [1968], ODEN and BHANDARI [1973], KRONER [1962],
KRONER and TEODOSIU [1974), RICE [1971, 1975] and others to develop
a plasticity theory. Among the advantages of such an approach are
that it simplifies the modeling of history effects in elastic-plastic
materials since they are, in essence, accounted for by an evolution
equation for the internal state variables. There are three categories
of classifications of internal state variables.

The first employs the classical theory of elastoplasticity and
its variations, e.g., MROZ [1973, 1981] and NECAS and HLAVACEK [1981].

In this approach, the hardness variables in the flow theory and the

back stress in the kinematic hardening are the internal state variables.

In the second approach,a direct application of micromechanical
structure is modeled, e.g., KRONER [1962], KRONER and TEODOSIU [1974],
RICE [1971], ACHENBACH, MULLER and WILMA“SKI [1981] and WENG [1980,
1981 Various measures of dislocation density, degree of irpurity,

and twinning modes can be identified as internal state variables.
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The third approach employs a combination of the ideas of internal

state variables and the phenomenological behavior as derived from
experiments, e.g., HART [1976, 1979], BODNER and PARTOM {1972,
1975], etc. This approach combines features of the other two. More

complex constitutive equations with more variables which are drawn

from the phenomenological results are involved. A simple version in
this category may be an elastoplasticity theory (ARAVAS [1985]) with
micro-void implementation in which a classical yield function (or

flow potential), e.g., von Mises, is modified by introducing the

volume fraction of micro-voids in the material. This particular theory,
which may find rare applications for engineering materials undergoing
large deformations (see FUNG, BURNS and LIND [1973]), results in a
pressure dependent plasticity theory which may be capable of modeling

a class of porous materials. ULater we utilize this third approach

in an application of the theory of Materials of Type N.
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CHAPTER III
THE MATERIALS OF TYPE N

In this chapter, a general continuum theory is developed for
a hypothetical class of materials which undergo large plastic

deformations.

3.1 Kinematical Considerations in Finite Deformations

While somewhat difficult to define with flawless mathematical
precision, the basic idea of a finite "plastic" deformation
of a material is heuristically clear: it is the "irrecoverable"
part of the deformation of a material subjected to a loading
cycle. One imagines that a material in a reference stress
state 0, at a particle X is subjected to motions which carry

.0

the stress at this particle through a history which eventually

returns the stress to the original state 99°

of this stress cycle, the local state of deformation at X, however

If, at the conclusion

one chooses to measure it, differs from what it was before the

stress cycle, then a portion of the deformation was not "recovered”

and this is dubbed the "plastic" deformation. It is clear :hat

ta

vw,v..,_..r

"...r' i
.

A

these ideas are local in character; they mav have meaning only

L L in a local neighborhood of a material particle or for bodies

Y-

;,:t in states of homcgeneous deformation. Having these ideas in our
’i‘ mind, we offer in this section alternative decompositions of
[ -35-
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the deformaton gradient to the multiplicative and the additive

ones proposed by LEE [1969, 1981] and NEMAT-NASSER (1979, 1982],
respectively.
Let us consider the motion of material body B relative

\J
to a fixed configuration C c:'m“ (N < 3), which is defined

0

by the map « B ~+ ]RN, X = KO(X), where X is a material particle.

o’
The spatial position x of a particle X at time t is then given

by a relation of the type

x = x(X, t) (3.1)

~

with X € KO(B), t >0, and x a continuous invertible map from

C0 intoimN. The deformation gradient tensor F at X at time

t is defined by
ax

g = 3? (3.2)

Let N (X) denote a small material neighborhood of particle
X. The motion of the body carries N (X) from the reference
configuration Co to the current configuration Ct. Let the Cauchy

stress 0 at any particle A € N(X) 1in C, be denoted 0(A, 0) with

0
o(A, 0) = oo(x) + w(AX) VA€ N(X)

where AX = A - X. If o is continuous at X, then
lim ?( A¥) =0
|lax]|+0 &X

denotes the Euclidean norms. We shall refer to OO(X) as

the initial stress at particle X. For . .plicity, we omit other

variables (such as temperature, etc.) that could also be listed

in defining the "initial state" of the material.
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During an interval of time (0,t], t > 0, the stress at

particles in N (X) are part of the stress history
H (&) = {0(4, )| A eN(X), 0< 1<t}

and the configurations of N (X) are denoted x(N (X), 1),
0 <1 <t.
In addition to the actual stress history Ht’ we consider

R . .
any stress history Ht’ corresponding to a relaxation of the

stress at X, such that

R R
H () CH (), HOEH

where f{O is the family of all stress histories terminating
at 9"

R = =
HU(A) € H o => (A, t) = g,(4, 0)

For P the values of a continuous map of N (X) into ]RN,
we denote by Cp any configuration of B for which the stress
history at é € N(X) is Hf(A). Thus, the introduction of a
(possibly unattained) configuration Cp provides for the familiar
device of comparing the geometries of the body in Cp with CO

to define plastic deformation. A typical illustration of this

is given in Fig. 3.1, wherein N (X) is shown in C Ct, and

0’
Cp together with differential vectors dX, dx, and dp [cf. LEE
(1981, p. 862]].

We shall now proceed to construct decompositions of the

total deformation into elastic and plastic parts.
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Figure 3.1 Popular configurations in finite elasto-plasticity.
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3.1.1 NEMAT-NASSER's Decomposdition
We first consider NEMAT-NASSER's additive decomposition
which can be obtained by manipulation of a displacement field

as follows [cf., NEMAT-NASSER [1979, p. 166]]):

dx -dX = (F - I)dX = du (3.3)

dp - dX = (FP - I)dx - duP (3.4)
If we demand that a single-valued displacement field must be

realized in reaching the current configuration, we are led to

a definition of an elastic deformation gradient given by

(u(X) + du) - [u(X) + duP] = (F% - 1I)dx (3.5)

We next use equations (3.3),(3.4) and (3.5) to eliminate du and

-

dup and obtain

asdand il and Sul aed o B At Safc el Ank Ae b bini A

e daihntusSiind dndendesdondns

PP S

S A L. . . - PR . -
PR 2 L. o e S AT et et e e
R P TRV T U SRR SIRRT SUTSI S IUomee NEWSTIE I W AT SR W B

F=°F +FP -1 (3.6)
In other words,
F€dX = (du - duP + dX) (3.7)
and
P - p
F'dX = dp = (du® + dX) (3.8)
Since the material derivative of x is defined by i=3x(x,t)/at=&,
3 du 9/9x\aX S |
L 3x 3t 5?(3 )3: - FF (3.9
b
2 and, from equation (3.6)
K,
L . .
- FaES e PP (3.10)
;f; We have
i L = FeEl « FPFTY . 1% 4 P (3.11)
,-:'1 N N N N
o
-1
b:.
-
e
.:r"‘.
4 .
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Finally, the symmetric part of L is given by the sum,

D= 3L+ = 3® 4T+ 3P+ PH G

= p% + DP
where D¢ = FF !, pP - FPF7! (3.13)
<~ |syml < <~ |sym’ :
and | denotes the symmetric part of the tensor.

sym

3.1.2 LEE's Decomposition
Lee's decomposition starts "from the chain rule" [see LUBARDA

and LEE {1981, p.4]: i

=3x _%x 9p _ gepp
F=xX-2-R . FF (3.14)

Then, by using equations (3.11) and (3.14),

L = FF ! = (FFP + FeFP)FP1pe™! .
- FeFe! & FepPpPlpe-! (3.15)

- %+ FoIPFe!

We recognize from (3.5) that the rate-of-strain measure D could

not be decomposed additively, as Lee noted. In metals, elastic

strain rates may be small, and equation (3.12) can be approximated j
by “
. L%+ TP  and D = B¢ + DP (3.16) :

1

But this additive decomposition is, in general, invalid for the 4
(perhaps unusual) case of finite elastic deformations. ':
"

K

Although we want a strain rate which is independent of the

rotation effects, the previous decompositions do not render a full
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1| and F

. stretch-dependent strain rate since, e.g., pP = FPF- sym

contains the rotation effect as F = RU = VR. Furthermore, the previous
decompositions pose a question about the conceptual validity of

the differential operation dp/dx. This fact may generate an overdeter-
mined system of equations. The determinacy of a system of elasto-

plastic equations will be discussed in a later section of this

chapter after all the field equations and the constitutive equations

L are established through the theory of materials of type N.

s To cure the difficulties mentioned above, we will search for
ti new kinematical variables.

3.1.3 Altennative Decomposition Methods

Consider again a particle A in the neighborhood N(X) of X,
in the reference configuration (see Fig. 3.2 or Fig. 3.3). The
position vector of point A relative to the origin of the fixed

spatial reference frame is denoted

0A. =X + AX

..- Co
L -
N
According to the polar decomposition theorem (see e.g. GURTIN

*e [1981]), the deformation gradient F can be represented as the composi- Ty
r . A"

tion, ]
[ N
[  F = RU = VR (3.17) 3
£

where R is a positive definite orthogonal rotation tensor, U is

the right stretch tensor of F, and V is the left stretch tensor of F.
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A) Right Polar Decomposition

The location of A in the rutation free currant configuration

Ct_, as in Fig. 3.2, is
OR, = x +R'x = y(X,1) + U(X, )X + W (X, t, 8X)
(3:18)

where

lim = ||W, (X, t, 8X)]| = 0 (3.19)

Now let us consider an intermediate configuration Cp_ which
may correspond to a "rotation free'" state at the initial stress

level ¢ Then,

0°

OA, = X(X,t) + UP(X,)BK + W (X, t, 8X)  (3.20)
p- b S -

and W, has the same asymptotic behavior with respect to |[4X] as

does !1.

e \
We next introduce a second order tensor U which represents

-

the elastic stretch tensor and is defined by

U®(X,t)8X - AX = OA. ~- OA

C C :

t - p- 14

4

= [U(X,t) - UP(X,0)]aK 3

3

]

+ W (X, t, 8X) - wz(x, t, AX) .

g

(3.21) _

Thus, in the limit as J8X| + 0, we have .
u=u®suP- (3.22) 5
E
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X(X,t) R

o] / \
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Figure 3.2 Configurations by the right polar decomposition.
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and the relatioms (3.17) and (2.11) give -

F=RU = RU® + RUP - R (3.23)
L=rF]1
= R RT + RUSU™Y « uPuhHRT (3.24)

Therefore, D¢ and pP can be obtained as

-~ -~

p® = R 0° v} RY| (3.25)

L RT) (3.26)

p? = R P U

PRy

sym

B) Left Polar Decomposition

The left pclar decomposition cannot be constructed as easily

bttt A g

and simply as the right, but a formal manipulation of the key tensors

is still possible. In this case, the material is first rotated

aataie Bt A

as in Fig. 3.3. Therefore, the location of A in the rotated reference

configuration C0+ is

OAC = X + R AX (3.27)

whereas the locations of A in the current configuration Ct and in

~

the rotated stress-free configuration Cp+ are

OAct =X+ ox

= x(X,t) + V(X,t)RAX + w3(x, t, aX)
(3.28)
and

GKE = x(X,t) + VP(X, t)RAX + W,(X, t aX)  (3.29)
pr T DR -
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Here w3 and Wa have the same asymptotic property as do W

1 and ?2.

In a way similar to (3.21), a second-order elastic (left)

stretch tensor V¢ is defined by

ve(X, t)RAX - RAX = BKC - DA,
w oL T R . -

= [V(X, t) - VP(x, t)]RAX

+ w3(x, t, AX) - wa(x, t, &X)
-7 - - ~ (3.30)

And ||AX || » 0 gives

v=vyv®s+vPo (3.31)
or
F=VR=Vv"R+VR-R (3.32)
Finally, from the definitions of L and D,
L=FF!
e -1 -1 T -1

m
<,
<
+
<
©
<
+

e
8 (Vs R+ gy B)
(3.33)

where, for example,

%1(Ye§) - Ye§ RV and gz(Vp, R) = VPR RTv™! - R RTY7!

(3.34)

Then one could define,

2

w3

€ = (V€ v 4 gl(Ve, R)) | (3.35)
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and

P _ (u® -1 P -
? (Y Y + %2(Y s !}))ISym (3.36)

It is noted here that unlike NEMAT-NASSER {1679, 1982] or

LEE [1969, 1981], neither v® nor VP need be a function of the gradient ;

of an "elastic" or "plastic" displacement or position vector field.

However, if u is the particle displacement field, we always have,

i e

F=1+%Vu (3.37)

It has recently been pointed out to us that our decomposition

i

through (3.17) is similar to that proposed by SIMO and MARSDEN {1984].

3.2 Materials of Type N

The thermomechanical behavior of the body is governed by the

principles of conservations of mass and energy, balances of the 7
linear and the angular momenta, and the law of entropy production.

Local forms of these principles can be writter as follows:

AR L

*Conservation of Mass

p det F =g (3.38)

‘Balance of Linear and Angular Momenta

dive +p b = o;f' (3.39)

0 = qT (3.40)

WP T FRPAT SRR

‘Conservation of Energy

o% = (?:L) - divg +pr (3.41)
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Y ¥ VR

‘Clausius - Duhem Inequality

. .9 r
pn + div T -8 0 (3.42)

Here o is the mass density, Po the mass density in the reference
configuration, g is the Cauchy Stress, b the body force per unit

mass, € the specific internal energy, q the heat flux vector, r

the heat supply per unit mass per unit time, n the specific

. ‘.H- | TSP | n_f-‘.K__‘JJ 8

entropy, and 6 the absolute temperature.

It is customary to introduce the free energy density function

instead of the internal energy density € by

= €-no (3.43) X
Now we are at the place to define a general class of materials d
which satisfies certain properties. i i

Let us first introduce sets S CR3I x M3, ACR3 x R3

and W = S x A.

R
n
.1
-4

A material is said to be of Type N if and only if it is
characterized by constitutive equations,

¢ =¢ (E,8,g,a)

g z (5,9,8.0)
- T A (3.44)

n =N (E,8,g,a)

q = Q (Eve’g’a)
and there exists a potential y:W » (=~ ,»). Which has a nonempty 4
generalized subdifferential such that b
(P,~a) € 3W(a,A), V (0,A) ¢ (3.45) ‘
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Here g = grad 6 and is a tensor referred to as an internal state
variable. The elastic strain measure E and the plastic strain
measure P were used without specific relations with the kinematical
variables. We will investigate these for all four cases which
were introduced in Section 3.1.

From the result (2.13), the relation (3.45) implies the

inequality
(Pio*dg + C-a. AR, < Dry((a,A)3(0%,A%))
J(o*,A%) ¢ W (3.46)

Where <-,-)s and {+,-), denote duality paring on S* x S and
A* x A, respectively.

Geometrically, we have the normality (hence, Type N) conditionm,

By =a), =1) € N, [(0,4), v(a:A)] (3.47) :
]
This relation is illustrated graphically in Fig. 3.4 with ;
U =2 (0,A) and F = . ]
4
T Furthermore, if the potential y is differentiable at (g,A) :
l;. then Nepiw at (o,A) has a single element. So, j
. ST 'R ]
= By ~0) = 5@ ~
- - ;
.- or
:f~ 3 ]
r“:\ P = sa-lk i ) J
&N - " (3.48 i
£ : -1
- and ]
. v
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V“"'. . - - -a—‘g 4
;':‘:: ? aA ! ::
YRl ~ ~ \
. 3
%.
b )
I_'.-~ «
p
2 :
P
.- '
!!; :
T e e e e e T T L e



s % e " RAab i Uy VA S*0 i aiie Y W g Wiy Wiy Sa it

T T R WY W T S TwIY W ey wr Y T e e

e tliie* Sl Y el Wil Sl Sl vk nlh Aag Salb it el iadb oadt g

AN

7

T YT~
g . B e o
P , qf

*, MR R
o e T
3 S el

P T T XYY
T, AR
.

Figure 3.4 Normal cones at u

in convex neighborhood and
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We remark that if y is convex and l.s.c., the materials of
Type N reduce to the generalized materials introduced by HALPHEN
and NGUYEN [1975] that is, from Theorem 2.2,

(0,A) = 3u(o,A)

- ((Py=0), (0%, A%)=(0,AD><  b(a*, AN)=y(o,Ax)Y (0%, ADE ¥

or

CB,0%-0> + (-a,A*-A> < y(o*, A*)-y(o,A)

W (o*,A%) € W (3.49)

Eliminating r between (3.41) and(3.42), and taking into
account (3.43), we obtain

o:L - pé - pén - % q-98 > 0 (3.50)

Assume that the map: (E, 0,g,a) + ¢(eyey,0) is C1 in
each argument. Then the rate of change of the free energy can be

expanded by

T a (3.51)

. a°-
.E+ﬁ6+

)

S

;-

Q|
¢ ©

Q|
[
.
t0Q
+
(o34 K- %
¢ ©

Where the inner product notations ": and ." for tensors (2nd order)

and vectors mean that

A:B = tr(ATB) = 7 Ai. B.. and a.b = ¥ a_.b,
P g 1) j Cij bl i'i

Putting (3.51) into 3.50) gives

3¢

. a¢ . .
o:L -p : E - 0(33 + N) 8 —p-gg g

[- 5 K%
t ©

q:76 > 0 (3.52)
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- 4
Ncticing that none of the constitutive variables in the assump- e
tion of materials of Type N are functions of 8 and é, we can vary o
the variables 6, g without changing the other variables. Then we »
- wi
will obtain the following equalities ]
N
n = N(E,6,8,0) = - 32 (3.53) ]
A (3.54)
- 3
and ensuing inequality
g:iL-p2% . E 4+ A a -1 q * ve >0 (3.55)
- 3E | ~ . 6 . -
where A= 20
~ 9a
Equation (3.54) implies that ¢ is independent of the temperature -
gradient yg and so is the specific entropy .
We notice here that we need to know the relations among L,
E and P to obtain more restrictions from the inequality (3.55).
3.2.1 Case I
We first apply the kinematical definition of NEMAT-NASSER,
i.e., from (3.13)
1 foe -1
oy ?I = f f F |sym dt (3.56)
re ° »
= <t yPe-1 ;
AR L (3.57
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Then
g: = : = B 2 P )
9:L = 9D = 9:(Ep + By
and the inequality
-pdy . g p +A .o L. -
(cz 035).,EI+?'?I+~'? g 9 V82 0 (3.58)
gives one more restriction
o = p 3¢ (3.59)
- 3E
I
and inequality
o:Py +A:a- 2 q¥8 > 0 (3.60)
where the thermodynamic force A, which is designed to be conjugate
variable to the internal state variables, is defined by
= -3
At (3.61)
3.2.2 Case 11
The result (3.15) of LEE's decomposition gives
t Ze =ze-1
= .62
FII £ F F |sym dt (3.62)
po= [CECEP PR g (3.63)
! s -~ o~ - . sym
In a similar way, we get
BT
° - .64
- aFII (3.64)
R T e R SRR
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and

3-8 > 0 (3.65)

REMARK: The definition of plastic strain (3.63) may lead to some
difficulties, as noted by NEMAT-NASSER (1979, 1981]. Since (3.63)
contains tensor F. which represents the elastic deformation, there

arises the question as to whether or not PII

the plastic deformation. Furthermore, the definition F® which is

really represents

used to define the elastic strain (3.62) contains effects from the

intermediate plastic configuration Cp as in Fig. 3.1. Here we assume

that we can vary the variables E and % independently. When we

have a deformation where significant couping between E and P exists, -

(3.64) and (3.65) may be invalid. ] .
1
3.2.3 Case I1I d
From (3.25)and (3.26) we define strains by ?
_ t re -l “]
° ]
to o) R
Prir =/ WY |oym 40 (3.67) :
° 3
o
then Y
. T . T .
D=RE R +RP R (3.68) ’
d
A .t.::..:" ;J;'z.' K




Substituting (3.68) into (3.55) gives

T 3¢ . T
(R'g R -pop= ) : Eppp + Rig RiPppy
Einr
.1
+ A ra- 5 q-Vo > 0 (3.69)

T . . .
Here we rename R gR = S and we call S Dienes stress since it has

~ ~ -~ -~ ~

appeared in the the work by DIENS [1979].

By the way, from (3.69) we get

3
s ,pb%_ (3.70)
- “111

and
SiP.._  +Ata-Lq- Vg >0 (3.71)
b § 6 SRRARAHR N .

REMARK: Kinematically, Dienes stress § has a special meaning. Since
S 1s defined as a reverse rotation of Cauchy stress g, it is the
stress in the configuration Ct- in Fig. 3.2. The configuration Ct—
is designed to be a rotation-free configuration. Therefore, variables
U, S and etc. in Ct— are rotation free and we are able to obtain a
materially objective stress rate. This issue has prompted many
discussions of appropriate measures of stress rate (see, e.g.DIENES
[1979], NAGTEGAAL and DeJONG [1982), ATLURI [1980, 1983] and LEE
and BERTHEIMER[1983]).(]

From the definition

s =R g R (3.72)

2 2

1

€
a

g PP
X‘l B A
. A '

. - i_




we have
S-RoR+rdr+non
= R'G - fR" o + 0 RRVIR (3.73)
since
RRY = 1 => RR® = - RR' (3.74)

- - -~ -

Then an otjective rate of the Cauchy stress ¢ is

v _ e T .
COZRSR =0 «Wo 40 & (3.75)
where w = é RT

V .
Notice that U is a stress rate in the configuration Ct and S

is a stress rate in Ct in the Fig. 3.2.

3.2.4 Case 1V

From (3.35) and (3.36), we could define a set of strain measures,

~ -~

t ,ne.,-l e
Ey 'J; (Ye‘_’ *g (v°, g))lsym dt (3.76)

t
- *P. -1 P
Ery £ W'V +g (V, R)) | sym dt (3.77)

Then, from (3.55), we get
s

0 =p— (3.78)
- aFIV
and
3 - 1
9:Prpp YA a- g arth 20 (3.79)
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3.3 Evaluations of Various Strain Measures

Up to now, four sets of system of equations according to four
kinematical definitions have been proposed. In this section we
evaluate all of these cases and choose a strain measure which is

both physically sound and convenient.

3.3.1 Determinacy of Governing Equations
Ignoring thermal effects explicitly, we again list the following
equations:

i) Field equations

p det F = C (3.80)
. e T
divo+ pb=px, 0=0 (3.81)
ii) Constitutive equations
From (3.48), the plastic constitutive equations
p =3V
F 3 (3.82)
o= -
- 3A (3.83)

and the elastic constitative equation (one among (3.59),(3.64),
(3.70) and (3.78))

g (or S) =p'%% (3.84)

and definition

’ (3.85)
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iii) Kinematical relations

- X
F =3y (3.86)

Case I:
r F=F +F -1 (3.87)

~Fp - gjl (3.88)

(3.56)

L (3.57)

Case II:
F= F¢ FP (3.89)

(3.87)
(3.62)

(3.63) o

Case III:
F=RU (3.90)
n=0v%4+0P -1 (3.91)

(3.66)

(3.67)

Case 1IV:
F=VR (3.92)

v=vE4+vP o1 (3.93)
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The total number of unknowns and the total number of equations
are listed in Tables 3.1 and 3.2 for all four cases.

The first and the second cases give 3 more equations than
unknowns, i.e., overdetermined systems of equations are obtained.

Generally, we cannot solve an over determined system of equations
like these. So we must find the way to eliminate the extra 3
equations. It is noted that the 3 extra equations result from
the introduction of the variable P which may not be a single valued
function. But in the first two decompositions, we have assumed
that the operation dg/dx is valid, and this implies a compatibility
condition is fulfilled.

The third and the fourth decompositions furnish well determined

systems of equations. But the fourth case becomes very complicated

since the rotation effects are not explicitly removed.
In the following section, the actual differences of the
previously mentioned strain measures in the one dimensional

homogeneous deformation are analyzed.

3.3.2 Calculations of Elastic Strains

L We now consider a one-dimensional case of homogeneous

. deformation. The deformation gradients then reduce to stretch
E-% tensors (there are no rotations). In this case, the Nemat-Nasser

decomposition reduces to the same representation as our right and

Dl o = e 3 o
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Table 3.1 Number of Unknowns

Variables Case 1 Case 2 Case 3 Case 4

tvy 1 Q
o [=))
[+ )] (=)}
o (=}
[+,] (=)

¢
(=)
(=)
=)
o

> 1R
O
O
O
O

)
o
vy

[ =]
(14
o

< < i
-] m ©
o
o o
(RPN Y VI

U
w
w
w
w

[

+ 0
w
w

=
w
w

‘.' '... ‘. ! . ' ‘."A. "_ ,"“. - :‘ . "’ ."' .'., '- : ','
[ =]
o
o
L

Y 1Y

Total 70 70 70 70
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Table 3.2 Number of Equations

D Bl Sl Bl i e Al M A

v TN

Equations Case 1 Case 2 Case 3 Case 4 f
- 3.80 1 1 1 1 §
s 3.81 3 3 3 3 *
- 3.82 6 6 6 6 R
_ 3.83 9 9 9 9 %
' 3.84 6 6 6 6
: 3.85 9 9 9 9 8
- 3.86 9 9 9 9 b
f‘ 3.87 9 9 ‘4
= 3.88 9 .1
' 3.56 6 .
3.57 6 2
3.89 9 v
, 3.62 6 -
- 3.63 6 ]
- 3.90 9 N
— 3.91 6 —ﬁ
2 3.66 6 K
o 3.67 6 5
3 3.92 9
B 3.93 6 4
' 3.76 6 -
3.77 6 e
f' )
Total 73 73 70 70 5
£ ]
:_ 1

o
o
9
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left polar decompositions. For simplicity, we shall assume no
change in elastic properties during plastic deformation and that the
material is characterized by a bilinear Cauchy stress-engineering
strain relation of the type shown in Fig. 3.5a.

Under these assumptions, we establish as possible configurations
those shown in Fig. 3.5a. The reference, the current and the stress
free configurations are shown and were computed using the definitions
given earlier. An "elastic" configuration, which is merely another
intermediate configuration, is introduced for convenience for
calculating the Nemat-Nasser strain measures.

Here, we consider a specimen whose initial length is Zo and,
after a uniaxial homogeneous elastoplastic deformation due to a stress

loading of o, the specimen has elongated a length alo as indicated

in Fig. 3.5b. Then an unloading causes the removal of the elastic

portion of the resulting total deformation, i.e.,

x=axX, 0<x<f (3.94)
Ae g . _aoX
a x-de E- %% B0 (3.95)

Therefore, we have

acX akEX
4 a X v v (3.96)
e = x + 32X (3.97) ‘

E+0
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aw
144
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s

Cauchy stress

0 Ercineering strain E=(x-X)/X

.' (a)

- 1). Reference configuration (Co)

-
-l
o
[ B
<
[
~

5 2)Current configuration (Ct)

2 —

(=
o x= aoX

s

3) Stress free configuration (Cp)

P d
14

39 p= aX- aoX/(E+c)

4) LClastic configuration (Ce)

[ 1
L4 v

L e= 00X/ (E+o)

~

(b)
Figure 3.5 (a) Bilinear stress-strain relation.
(b) Configurations in one dimensional deformation.
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Next, let us calculate Ax,Ap and Ae due to a small change in

o, so that the increments (or rates) of various deformation gradients

can be obtained:

x(o + 8c) = aX + AQQ%QK z x
o+ a0 @ s O G0 actione
e(c + Ag) = X + é%;—ﬂ—g;
Therefore
Ax = x(o+A0) - x(0) = lg%égi (3.98)
Ap = p(o+ia) - plo)
. as g, 1000, (oHo)x (3.99)

Ae = e(o+Ag) - e(o)

(c+bo)x _ ac X (3.100)

= Eto+ao E+o

We can now compare the measures of the two decomposition

schemes, which are different in this one dimensional deformation.

i) Nemat - Nasser's Measures

X
F 3X a (3.101).
p_23P__@0 _aE
F X a o ¥ (3.102)
e de ac
F = 3% 1+ E40 (3.103)
&
r:'.
b,
' &
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and

AF =

Foat = FE(o+80)-F° (o)

e _ (o+ao) 3% _ ao
9X E+o+00 3X E+o

_(Eﬂ_).[1+100’3°]- g

E+o+A0 aE E+3
1 1000 EAag , 1000%A0
= +
(Ev0) (Ero+b0) (EBo + — % oE

100E(40)? | 10Co(49)?)

As Ao > 0 and At » O,

Similarly,

and

+

aE
e ] 1000E = 10002
D= Gy? B+ * S )

o)
= 2
TE(ER) (@E®+ 100 Eo + 10002)

ApP = 3P _ g0 100ag _ (o#80) 3x
3x E40 E ~ Eto4tc 3

p___0 ' 2 2
D SE(E0)Z (100E- + 100Ec - aE<)

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)
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ii) Lee's Measures

(0+A0)>-( _ao
E+o+A0 E+o

Ae = e(0o+A0) - e(g) = X

.
Mt S KBS i Bl £ T el n_mTodm AN A o a M

Q
x

-e E +¢ L
Fr==% (3.109) [
and J
- 0e <
AFE = Fat = FS G+ a0) - Fo (o) 4
3x(o+ag) =e
ap(o+to) ~ F (ol
A
E4+o+Aco E+o A
= -5 =% (3.110) J
~e -e, —e-l ]
Dot = FOALF ]
- 80 b
E+o i
{
]
<
As A » O and At » 0, then we have 1
p® = =< (3.111) g

E+o

And for Dp(or AFP) we have same result (3.107) [or (3.108)].

Since the plastic strain measures in the previous two cases

are of same form, we now compare the elastic strain rates for various

situations. Table 3.3 shows the comparisons for various values of a

with fixed ratio of 0/E = ,001 and Table 3.4 shows the comparisons
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Table 3.3 Tabulation of proportional rates for o /E = .00l
Proportional e, . ze. . | |
a rate DE/S DE/g \
.2 1.4975 .999 !
.4 1.2477 .999
.8 1.1229 .999
1.0 1.0979 .999
1.5 1.0646 .999
2 1.0480 .999
3 1.0313 .999
4 1.0180 .999
5 1.0180 .999
L-.';\.' ’
b
-
L'-'.éj:: Table 3.4 Tabulation of proportional rates for x = 2
i. Proportional e se
S g/E rate D E/6 D E/c.:
o -
0 1078 1.000048 .999999 |
o 107 1.00048 .99999 '
L..«‘-: 107 1.0048 .9999 .
. !
- 107 1.0479 .999 '
1072 1.475 .99
-
@9 107! 5.37 ; .91
-
. 1 25.25 .5 |
- !
-
e e :'\' TR PSPPI ey




for various values of o/E with a fixed value of a=2. 1In each Table,
the values of DeE/o are tabulated. In other words, DeE/o= 1 means
that

o = ED® (or ED®) (3.112)

3.3.3 Evaluation

It appears to be difficult to define deformation, as shown in
a convenient way that decompose into purely elastic and purely
plastic parts even in one dimensional deformation as shown in
Section 3.3.2. However, this is not actually a necessity in a
meaningful theory, provided the constitutive equations for each
are formulated properly (NEMAT-NASSER {1982}, SIMO and ORTIZ
{1985]). A consideration that may be of some importance is

whether or not the particular decomposition lends itself to a

well-determined system of equations and to rotation effect-free
strain measures. This proves to be the case in the new formulations
given here. A positive feature of Nemat-Nasser's decomposition,
shared by our own right-polar decomposition, is that it does lend
itself to experimental verification because of the normalization

by total deformation gradient (or total stretch )} in deformations

or D = UeU-llsym)which may be easily measured
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in controlled laboratory experiments.

From now on, we employ the following strain measures:

v~ ae (3.66)

(3.67).
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CHAPTER 1V
REPRESENTATIONS OF FLOW POTENTIALS AND APPLICATIONS

4.1 Introduction

In Chapter 3, a theory of elastoplasticity was presented
that made use of the notion of generalized stress potentials for
deriving constitutive equations for the rate-of-plastic deformation
and the rate-of-change of an internal state variable. This theory
embodies many types of classical and non-classical plasticity
theories and does not require the existence of yield functions. Yield
functions can enter the theory, however, through the definition of flow
potentials, but these potentials need not be convex nor need they be
differentiable in the usual sense.

Specific forms of the free energy and flow potentials can be
easily derived for cases in which these are assumed to be isotropic
functionals of their arguments. Such isotropic function representa-
tions are by no means unduly restrictive, for we demonstrate that
they can be used to represent some anisotropic hardening rules.

We show that numerous special theories of finite elastoplasticity
and viscoplasticity that have been proposed in the literature can be
deduced from such representations as special cases.

An interesting by-product of some of these flow potential
representations arises because they do not specifically involve a

yield function, but rather model the evolution of microstructural

-70~-
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i changes in elastoplastic and viscoplastic materials during various
f~ programs of loading. As a result, by defining a yield stress as that
E corresponding to a 0,2% residual strain (in a uniaxial test) in much
:h the same spirit as one defines it in an experimental program, we
S can actually calculate yield surfaces for such materials. Some of
f these mathematically produced yield surfaces are physically reasonable,
L others are not.
F When the representation of flow potential happens to be
- determined by a given yield function, it is called an associative

flow rule; otherwise, it is called a non-associative flow rule.

Classical theories of plasticity are generally characterized by
associative flow rule (DRUCKER 1967] and PRAGER [1959], etc.);
while some authors (eg., ILYUSHIN [1960] and NEMAT-NASSER [1983])
have shown cases in which associative flow rules are inappropriate.
ILYUSHIN also put forth arguments against the normality rule
which arose from dropping the assumption that no change in elastic
properties takes place during plastic deformation. NEMAT-NASSER
introduced a notion of a "workless straim rate", which could
invalidate the usual normality rule in calculating the rate of
stress-work in the isothermal processes.

Another approach was advocated by HART (1970, 1976, 1982]
and BODNER and coworkers {1972, 1975, 1973, 1983], who proposed
plastic constitutive relations which involve a set of internal

state variables, but not necessarily an explicit yield function.
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Strain rate and rate-of-internal-state variables are independent - &
constitutive variables in such theories.
A general representation of flow potentials for initially d'

el

g

isotropics materials with internal state variables was proposed

by XRATOCHVIL ]1978] and KIM and ODEN [1985a].

4,2 Isotropic Functions

b L

We begin by reviewing some notions of isotropic functions.

Definition 2.1: Let Q € IR3 X IR3 be an orthogonal trans-

formation. A function T : U+ V, where ( (or V) is one of the sets

{R, 1R3, RS x m3}, is said to be isotropic if

T*(x) = T(x*) ¥V x €u 4.1)
where * is defined by

i) B*=B,%Y B€ R

S - SRR

1) B*=QB ,V B € RS
111) B* =~ QaQ’ , VB € R3 x ®>
.4
Next we list the representation theorems for isotropic functions B

without proof. (For proofs, see GURTIN [1982]), LEIGH | 1968] or

TRUESDELL and NOLL [1965]).

Ll e

Let G be a subgroup of the symmetric second-order tensor group

and SA be the set of invariants of A, i.e.,

R . . . . . e e e S . . .
Se e T .= v C P A R R I . R I . . .
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Let I(G) be the set

16) = {1, A€G)
Similarly, we denote
Tag = {tr A, tr B, tr 13.2, tr Bz, tr A3, tr B3 tr AB,
tr A Bz, tr AZB, tr AZBZ}
and
I(G x G) = {IAB,AXB€GxG}

(1) Representation Theorem for Isotropic Scalar Functions

a) A function ¢ : G > R is isotropic if there exists a

function ¢ : I(G) *+ R such that

$(8) = o(1,), 7 A€G (4.2)

b) A function ¢ : G x G + IR is isotropic if there exists

-

a function ¢: I(G x G) » IR such that

o(a, §)=<;(IAB), VaxB € GxG (4.3)

(2) Representation Theorems for Isotropic Tensor Functions

a) A tensor-valued function G ; G » S is isotropic 1if

~

there exist scalar functions cbo, ¢31 d)z ;1 (G)+ R such that

6@ =010 1+ 6 (Tpa= (1A% Y a€6 ()

b) For isotropic linear tensor functions, the function G :

S + S is isotropic if there exist scalars y and ) such that

G(A) = 2ua + A(tr M1 , ¥V A €S (4.5)

b B i
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c) A tensor-valued function G : G x G =+ S is isotropic
if there exist scalar functions ¢l, i=1,2,...,8, :I1 (G xG) - TR
such that

G(a, B) = ¢ l+¢‘§+°§+¢§2+¢ABZ+¢5(‘}§+§§)

2 2
+ 048 + 8% + 0, (48" + B') + o a780 + B2

~

YV (a, BYE G x G (4.6)

It is worthwhile to mention the definition of an isotropic
material as opposed to an isotropic function to perceive relevancy.

An isotropic material particle is one such that for some
reference configuration Co, all rotations by the response functions
of the material are indiscernable (cf. WANG and TRUESDELL [1973]).
In other words, the material is isotropic at particle p if every
proper orthogonal tensor is a symmetry transformation for the
response functions of the material (GURTIN [1981b], or for a slightly

different version see ERINGEN [1962, 1967]).

4,3 Representation of Flow Potential and Free Energy

From the theory of materials of type N, we obtained the plastic
strain-rate and the-rate-of-internal state variable, through relations
(3.45) and (3.48) respectively in the differential case, from the flow
potential. Next questions that arise are how one might obtain a spe-

cific flow potential for a given material and what might be considered
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as general forms of flow potentials for certain classes of materials.

SR N A

Towards this end, we shall first confine our attention to
materials characterized by isotropic functionals. The following
approach is similar to that of KRATOCHVIL [1978], althcugh he did

not make use of the concept of flow potentials, We also mention

that DESAI et al.[1983] suggested the use of polynominal
expansions of flow potentials in terms of invariants of its

arguments.

?i? From the equation (4.3), an isotropic representation of y (g,A )

is of the form,

-~

2

w(ag,A) = y(tr o,tr A, tr ¢o°, tr AZ, tr 03

, tr A3,

~ -~

It is occasionally convenient in classical plasticity theories

to decompose the tensors o, A into spherical and deviatoric parts,

]

P . tr oA, tr oA 2, tr o°A , tr o2 A ) (4.7)
&

[

P

_;{ i.e.,

o 5=sl+3

e ~ ~ o~

A=hl +8H

9. -7 (4.8)
b P = pl + P

X9 ~ ~ ~

[ a = Al + A

L_‘ . ~ -~ ~

[ @

. where s = tr 0/3, h=tr A /3, p = tr P/3 and X = tr o/3. Then,
F' : the expression (4.7) can be written by

1O

o

[ .

L

L

A

o

[

. -

&.‘ . - - - - - - . - -

o - -
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Y(a,A) = Y(s, h, tr §2, tr Hz, tr §3, tr H3, tr SH,
= .2 22,2 =2..2
tr S H, tr STH™, tr STH") (4.9)

The following lemma can be easily proved.

LEMMA 4.1: Let A and B be second order symmetric tensors and be

decomposed according to

a=¢trA/3 , A=A -al
b=trB/3 , B=3-5bl
then
=2
2_ 1, wrs) 7
A 3. dA ~

5 3(tr BA)
aé - oA
I(tr Kzg) = (A_B) + (B-Z) _ 2 (tr A—B) 1= Btr(@2:
%A ~ — 3 ~— - oB
atr(K3) -2 <2
= 34" - tr(A") 1

ser (D) | 32 _ L @2y y - 20D

aB -~ ~ ~ OB
. +2=2 =22
@) GEH 4 @R -Lad@sh - TEER)D

-~

When V(O,A ) is differentiable with respect to both arguments
at (c,A ), by using equation and Lemma 4.1, we can establish the

following theorem.
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THEOREM 4.1: If the representation of llJ(O,A ) is of the form

of equation (4.9) and ¥ : w * R is differentiable at (0,A ), then

. - =2 2 - =
? Col + c1§ + C g + c3§ + c4§ + cs(gg + §§)
4 (5 w2 + #25) (4.10)
and
&= dgl + dH +d,5 +4d u? +4,8 + a (u5 + §8)
22 . =2
+d (5% + §%n) (4.11)

where Ci's and di's are scalar valued functions of the invariants,

I L)
i.e. N OA
Proof: The chain rule, Lemma 3.1 and symmetries of S and H
suffice to prove the theorem. .}
A similar representation of the free energy Y of the material

can also be introduced; e.g.,

2, tr h?, tr 53, tr h3, tr E £,

~ -~

$(E,a) = 9(e, A tr E

-~

er EA2, er E2N, tr E2A%) (4.12)

~ o~

where E is given as a sum

E==%el+ with e = % tr E

e

From the relations (3.61) and (3.59) [or (3.64) or(3.70) or (3.78)], we

. MMemima 4 4 2 o _a

have
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2

A=kl+kA=kE+KkA4+KE

A=kt 4B * kg (EA + AE)

+ ks(Ezg + 1E) (4.13)
= 2 2 _ .
0= Lol + LE + LA+ LB + £, A7 + £5(E + EN)
2= =.2
+ L (% + E1) (4.14)

As before, the ki's and Li's are scalar functions of the invariants
and density p. We also note that, in many cases, it is convenient

to introduce a decomposition of the free energy into purely elastic

sf;'.'."_ and plastic parts, i.e.,

N

ﬁ 6(E, a) = ¢°(E) + ¢P(a) (4.15)
g If (4.15) holds, equations (4.13) and (4.14) reduce to

. . 2

e A= kgl + kg A+ kgl (4.16)

o= gyl + 4,E + £, (4.17)
REMARK 4,1: The inclusion of temperature does not result in a
significant alteration in our procedure. For example, if we rewrite
the equation (4.15) (as in KRONER and TEODOSIU [1974]) in the form,

o, @, T = ¢%(E, ) + ¢°(a, T (R1)
we would obtain same form as (4.13) and (4.14). But the coefficients

become functions of temperature. O

REMARK 4 .2: One of the representations of ¢ may be drawn from

linear elasticity, i.e.,
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¢° = -;— A (tr E)Z + U tr (g)2 (R2)

where A and p are Lame's constants. The elastic free energy (R2)
results in the relation

g= )X (tcr E) 1 + 2u E (R3)

Since (R3) is invertible, we obtain

1+y v
s A (R

which results in

14y

=—E- -

tr

tem.
Qg
)<

Qg

1 (R5)

where E and v are Young's modulus and Poisson ratio, respectively,
and g is an appropriate objective stress rate of Cauchy stress o,

and E is the elastic strain measure of (3.66).:]

REMARK 4.3: It is noted that in the present theoretical framework,
two representations of scalar functions, the flow potential and free
energy, are used as compared to only one, free energy, in some
thermodynamic approaches (e.g., KRATOCHVIL and DILLON [1969]}). But
these approaches are equivalent to ours because one must ultimately
provide the evolution equations for the internal state variables

and the plastic strain rate. These are to be determined by the flow

potential ¢ in our theory. [J
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4.4 Examples

We now investigate how various theories of plasticity fit into

the above theory.

4.4.1 Case I: Prandtl-Reuss FLow Rule

The following repregentations recover the Prandtl-Reuss flow rule
which is also obtained by defining the Levy-Mises yield function as
a flow potential. Assuming (4.15) holds, set

VY= Y(h, tr SZ)
(4.18)

% = P
When the functionals in (4,18) are differentiable with their argu-

ments, we have

g -c, 3 (4.19)
d=Cpl = A= ¢ (4.20)
and
A=kl = h- kg (4.21)
- Set C, = A= Cqe Then (4.19) reduces to
; if = 4 § (4.22)

which is precisely the flow rule for the Levy-Mises material. In

this case, h can be interpreted as the bound in the Levy-Mises

criteria, i.e.,

- g2 =
= f(,g) tr§_<_GY-h Ro
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When h = ko(a), the representations (4.18) describes a rate-
dependent plastic material with isotropic hardening.
B 4.4.2 Case 2: Bell's Flow Rufe
:;:._-: If we set A = 2 tr §2/82, where 8 is constant, then we recover
h Bell's flow rule for finite strain plasticity (see BELL [1983,
- 1984]).
[-A
4.4.3 Case 3: The Pragen-lieglen Type Kinematic Hardening
The representation
¢ = y(h, tr §2, tr H, tr § H)
- - - (46.23)
of = oP(n, tr ixz)
when ¥ and (pp are differentiable, leads to the following:
g = C1 § + CZI:l (4.24)
a=dyl +dH+ d,S (4.25)
and
A= kO.l. + kli\ (4.26)
Then equation (4.26) implies that
h=ky H=kA (4.27)
Introducing (4.27) into (4.24) and (4.25) gives
. - |
Broen .20 |

and
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A= d (4.29)
A= f,0+ d2§ (4.30)

where f1 = C k1 and f2 = d.k,.

2 1
We now demonstrate how Prager-Ziegler-type kinematic hardening
is characterized by the representation (4.23). The Prager-Ziegler

yield function may be written in the form

z - = 2 2
FGE, 8y, o) zexr@ - 5% - o (4.31)

where §b is the deviatoric back stress which represents the current
center of the yield surface. The yield function (4.31) results in
the flow rule,

P=al-s,) (4.32)

where n is a hardening parameter. Next we set Cl = -f1 = do = i = n

and Sb = A, Then, equations (4.28), (4.29) and (4.30) give a set
of equations which define a kinematic flow rule and an evolution
equation for back stress or an internal state variable, respectively:

P=2aE-0) (4.33)
and

/’\‘-‘f A+d

2 2S (4.34)

REMARK 4,.4: As noted in equations (4.24) - (4.26) or (4.28) - (4.30),
the tensor valued functions DP, o and A are isotropic even though
they represent an anisotropic hardening material (see equation (4.6)

with appropriate zero coefficients). This interesting fact, that

RS |

A
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a non-isotropic hardening rule results from an isotropic represen-
p]- tation of a flow potential functional or an isotropic form of the
p constitutive equations for DP and A, suggests that references to

anisotropic hardening may not be proper terminology. .

4.4.4 Case 4: Flow Rule for Tresca Materials
The Tresca yield criteria,

max | 0, -0, | -0 <0 (4.35)
1_1 1 J Y —
»

may be represented by the non-differentiable functionals

b= y(h, tr §2, tr §2) (4.36)

The principal stresses o, are functions of tr §2 and tr §3 which

i
satisfy the characteristic equation

3
i

-1

o 3

- % cr('S'z)oi cr(§3) =0 (4.37)

Since the Tresca yield function is convex but non-differentiable at
some stress points (the corners of the yield surfaces), the classical

flow rule is characterized by

(P, <) € (o, A) (4.38)
:\a ko 1 (4.39)

where 2y(+,*) is the subdifferential.

(o, A) = {(i’, -a) | satisfies the inequality (3.46)}.
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One can imagine generalizations of the Tresca flow potential
to cases in which ¥ is neither convex nor differentiable. Consider
a hypothetical material, the flow rule for which is characterized by
a convex Tresca yield surface at a given point in its stress history.
Suppose that low latent hardening prevails. Then subsequent aniso-
tropic hardening, after loadings in two distinct direction as in
Fig. 4.1, could conceivably produce a non-convex yield surface of
the type shown in Fig. 4.1. While some may argue that such hardening
patterns are rare or non-existent in real materials, they are never-

theless acceptable in the general theory outlined here. As an

example of non-convex yield surface, WILKINS et al [1980] derived a

star shaped yield surface such as that in Fig. 4.2 from experiments

on metal specimens.[]

REMARK 4.5: We also remark that there is frequently some ambiguity
in the literature as to exactly what is meant by the yfeld surface of
a given material. BELL [1983, 1984] uses two yield surfaces, the

inner surface and outer surface, and HILL [1979] also has distin-

guished between surfaces corresponding to an elastic limit and a
plastic limit., In subsequent examples,we use a single yield limit

(or surface), as the elastic limit, for simplicity.[]

=

Y
2

Now let us investigate a proposed new model of plasticity (or

viscoplasticity) which need not employ the concept of a yield

R

surface.
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L Figure 4.1 Subsequent yield surface after two loadings in different

directions.
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Figure 4.2 The nonconvex yield surface of WILKINS et al. [198u;.
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:i 4.4.5 Case 5: Bodnen et al. FLow Rule

;J: 4.4.5.1 Ilsotropdic Hardening

BODNER and PARTOM [1972, 1975] proposed a flow rule which is

drawn from the classical Prandtl-Reuss flow rule and improved by E

"o phenomenological observations, but which does not involve specifi-

cation of a yield surface. This theory is offered as a way for

characterizing isotropic hardening of certain materials.
- For the Bodner/Partom theory, the following form of potentials

oK can be introduced:

a
SR U SR

2 f (_1) i+132n1 (4. 40) .

v =Dy (nich) ]

i=0 (2ni-1)il J, -

. ]

> 4

==h. A= - - W4 -3

¢ h1A ho(h1 ho) exp ( mA/ho)/m (4.41) 3

X 3

- Here L

- Jp=ztr 3 5

. 1/n ::

- 8- 1y? @i, b

n 4

L] .

- - and D, s h1 and n are material constants. .

g ]

o From the expressions (4.40), (4.41) and the generalized q
g normality rule (3,45) (in this case, equation (3.48)), we obtain

the following Bodner/Partom flow rule,

NI AISTN R
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5
P~ (D) expl-B7/3,)"1)5/3,"
with (4.42)
- b= 8 + (hy - b)) exp(-md/h,) =

It is noted that as n + o, equation (4.42} models non-work

hardening materials (i.e., the elastic perfect plastic material).

4.4.5.2 Non-lsotropic Hardening

STOUFFER and BODNER [1979] extended the previous hardening model
r’i to the case of non-isotropic materials. A plasticity theory for non-
s isotropic hardening can be constructed by introducing implicit

forms of potentials which are different from the previous isotropic

L representations, i.e.,

v = ylo, A, a,) (4.43)

Ty
o B

'+

P _
o = 0(91‘ uzl

-~

e }
.

where V¥ € Cl(IR9 X 1R9 x IRQ) and o € C]'(IR9 x IR9), and we employ
oy and Ay
that I)P is given by a generalized Prandtl-Reuss flow rule

two internal state variables, As one example, suppose

N SR

=
P= 5= KA
or (4.44)
P 1 = Kijl'd. ou ,j
s e R
él = 30!1 = PO }‘ => h PO()‘l)

~ (4.45)
P, (M1 + P, (ho,

n
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The symmetry of DP and 0 and the reciprocity condition of HILL [1979]

result in the conditions

Riiee = Fyaee = ey T Freays (4.46)

If, in addition, we assume that the hydrostatic component of the stress

does no work, then equation (4.44) becomes
- (4.47) (4.47)

- _ P
P =K(A IS or Dy Kisr Sk

Due to conditions (61), equation (62) can be rewritten in the

form
A A A
F=8T (4.48)
where
, jpu l X 511 N
{d;} = <5 {T.} = {3 and 8" = 8
i P22 T 522 - -
Py3 533 |
. _ i
CR2P! 72 8,
72 By, 72 5,41
s P33} 2 S31J

Next, a principal hardness direction can be defined such that

P
= % 4.4
da Ba Ta (o is not summed) ( 9)

so that we can rewrite equation (4.45)2 in a form similar to (4.49):

Ala = Pl(h) + Pz(h)aa "
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Based on experimental observations, STOUFFER and BODNER [1979]
provide the following empirical relations for each term in (4.49)

and (4.50);

2 n+l 2 n }
B, = Dg exp I[- 7 (Aa /33,071 3, (4.51)
t . t .
Al = ho +q f h(t) 4T + (l-q)aaf Ya(r)h(r)dr (4.52)
a 0 0
h = m(hl-ho) exp[-m A/bo]x/ho (4.53)
with
_ 4P P - 4P P (4.54)
ay = dy/ ldy o vy = a7l
A=s:df=zT o (4.55)
-~ ~ a a
o
Here the coefficients DO’ n, ho, hl’ m and q (the latter specifying

the degree of isotropic hardening) are material constants, Yy
represents the cosine of the angle between the loading direction and

the principal hardness direction, and |]-l| denotes the Euclidean norn.

4.4.5.3 Calcwlation of Yield Surfaces

An interesting by-product of the plasticity theories discussed
here is that one can calculate an equivalent yield surface by setting
an arbitrary permanent strain level as an indication of yielding. In
fact, this rather arbitrary selection of a measure of yielding is no
different than what is done experimentally to determine yield stresses

for most metals,

CEPSC S are ari S e ae o aautulisadh andond Tt llen B Aol el o B FOIRERE NN
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In the present cases we suppose that we are supplied with a
specimen of material characterized by a collection of constitutive
equations of the Bodner-type Je.g. (4.51) - (4.55)] and that an
essentially uniform state of stress is developed during a laboratory {
test (e.g., a uniaxial tension test of a cylindrical bar of the
material).

We shall assume that yielding of the material occurs whenever
a .2 percent offset permanent strain is experienced. We shall thereby
trace out an effective yield surface for this material by determining

the yield stress in various directions and connecting these stress

points in the n-plane

A numerical procedure for performing this construction is

outlined as follows:

A) Numerical Scheme

An explicit method for integration of rate type-variables is
used for convenience. The following algoritfm is used:

(1) specify as an increment of stress, !

™=nT /N (4.56)
-~ ~Jnax

where N is total number of increments and Tmax is the maximm applied
load.
(2) Calculate the increment of the hardness variable h,

oh" = a(hy-h) expl-m A"71/m 183" /m (4.57)
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’ “" 1
ot T | RS P kT T AW W m

= n-1 (4.58)

- R - A VY '
1 k=1

(3) Calculate A o

. n n
AD=hy+q I 2% + (yq) signIAai] T ARP (4.59)
: k=1 k=1 @

(4) Calculate the plastic moduli

O W SE Vo LIPS LW | 1Y NN

= 2 )

- n 2 n+l n n n

L BO. DO exp[- In (Aa /3J2)]Jz (4.60)

, (5) Calculate the plastic strain increment

N n_ .n.n

_ AP i Ba Ta. (4.61) -

Next we proceed to the calculation of the yield stress. During -
this calculation, the hardness variables Aa are assumed to be

constant sinceup to .2 percent plastic strain there should be no

J significant change in Au'

q..‘;

- (6) Increase the stress in various directicns until

. -2 percent of an appropriate measure of total strain [|P|| is attained.
L -

5

n_ .2 n+l ., 2,..n;,. N
APi = D(1 exp]- Zn(‘Aa/3J2)']J2 T

n

o (4.62)

(7) Project the yield stress into the 7-plane as follows:

(a) First, take stress vectors which lie in the o, -

02 plane, since we change the direction of stress vector in the 01 -

b 9, plane for convenience in step (6)]. Then calculate the magnitude

Y ‘:
- ;,I"[-.' RIS U TR
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of that vector and the angle.between the vector and the 01 axis

(see Fig. 4.3]}:

f = Arc tan (02/011

(b) Project ¢ into the intersection line and the
line perpendicular to the intersection line which lies in gy = Oy

plane,

= s
og = lo| sin G + 6)

= il
o, [9[ cos (7 + 61

(c] Project og into m-plane and compute the magnitude
of the projection o of Og »
o = g cos Y, O =g
™ ] ™ c

and

where ¢ = cos L auar

(d) Compute the angle between the line perpendicular

to the intersection line in the m-plane,

AL e T T T -

" ! <. W, - N
b A A% ~ B _.,\.\..\‘.\ -‘.,-a '\_. R .
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intersection line

between 6, -6, plane ond 1. - plone

Figure 4.3 Projection of the stress vector into the n-plane.

.
e A K

OWENS W = & AV W -

e B

g . .

Y

P VW SYRIN




e gl e L aea st s v o Wl M el AR R AT A T R
T N T P W I e T Tl e N s W LR Pl e i aunit Sdh a~a UL S Rt M RAMCERtE RO gL IS R - Na e - e Tt
)

'

LY

~

95

PR T

.7 . "l ‘.l'a "

¢ £ cos-l(d’ﬂ 1/01' )

Throughout the steps (a) - (d), the yield stress can be placed in

o
=4
1'1

the T-plane.

2 .

B) Numerical Experiments

First, we consider a specimen of titanium RMI-50A. The

g
material constants of this specimen listed in BODNER and PARTOM -9
N
[1975] are: ;
m = 100 ?
n=1 'f
4 -1 o
D0 = 10 sec 4
hy = 1150 N/mm® (= 167.9 Kpsi) P
h1 = 1450 N/mm2 (= 211.7 Kpsi)

The elastic constants are taken to be
K = 123,000 N/om’
G = 44,000 N/mn’
To check our algorithm, the stress-strain curve produced in

a uniaxial test with the maximum loading Tmax = 400 N/mm2 was

AR 3 SSTACNDEREN §-3 CHSTRE.

calculated and the results are shown in Fig. 4.4.

Next a yield surface is created after a uniaxial loading x

history for the case q = 1 and q =0 as indicated in Fig. 4.5
and 4.6, respectively. In Fig. 4.5, we recoghize that the Bodner

et al theory is equivalent to the Levy-Mises yield criterion in the
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Figure 4.5 Computed yield surfaces in the n~plane for isotropic

hardening; the inner circle is the initial yield
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case of ¢ = 1. Quite different results are attained in the
hardening case illustrated in Fig. 4.6; not only do corners appear,
but a marked lack of convexity is seen to appear as the yield surface

assimes a "key-hole'" shape.

4.46.6 Case VIi: Modified Bodner and Partom Theonry

In the previous section, we analyzed the constitutive equations
by Bodner and his coworkers. In their theory, the variable A
conjugate to the hardness variable h needed to be defined but in
our theory of materials of type N this variable can be derived
from the flow potential y. Here we will furnish the theory which

follows the theory of materials of type N, that implies thermo-

mechanical validity, and we will use these constitutive equations

for the finite element computations in the next chapter.

. - a— A - m & A .

4.6.6.1 Equations
We first introduce a pair of potentials as in the previous :

I:._.. cases: '
9. i
- 6 = 21 (trE)2 + 2 (trE)2)
= 20 ~ p -
S [0} o]
o )
;5 : -hIA -z (hl—ho) exp (-md) (4.63)
{.ﬁ and
e N (+1 gt p2ni-l
e ¥ =Dot (- s . (4.64)
{}$ i=o il (2ni-%) J2n1 3

LY
e
)
.
e
[
[
[

[
%
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1 ntl .
Where B = Sh(E" yand A, u are Lame's constants and Do, ho, h1 and n
are material constants.
Applying (3.48) and results (3.61) and (3.70) to the potentials,
we obtain the following elastoplastic constitutive relations.
] A
S cpae =22 (rEy1 ¢ & our (4.65)
- P ~ - p -~
- ) o
h=-22ch + (h-h) exp(-mA) (4.66)
A 1 o~ pi-m .
1 2" ]
=i‘£= — - ' 4
? 55 D, hyT, exp ( o ) § (4.67)
- Ja i
=—ﬂ=l " "
N R (4.68) .:
. 1
where S' = § - 3 tr(S)
From the thermodynamic restriction, we obtained the inequality
(3.71). We need to check whether the given constitutive relations
satisfy this inequality. Otherwise, we have to impose this inequality
‘o
to get a correct set of solutions. :
1
: ] an K
A A A - :
| 2 .
. = [positive value] (2J3) > 0 )
b 3 - 39 ¢ .';,
- BRI T 4
[r. i 5
; =hi=8":P>0
L Thus, - (1/8) q-v8 > 0, as generally required.
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4.4.6.2 Determination of Coeffdicients grom Expenimental Results
We now have a complete set of constitutive equations for
elastoplasticity. A natural question that arises here is how to
determine the material constants experimentally.
To determine the elastic constants A and u (or Young's modulus
E and shear modulus G), we need two experiments, i.e., tension
test and torsion test in the infinitesimal elastic strain range.
For the plastic parts, there are 5 constants to be determined,

i.e., D, h,nh

o o 1> m and n. To determine these constants we need

at least two uniaxial tension (or compression) tests with different
strain rates since the constitutive equations have a capability
to model rate sensitivity. Next, let us examine the role of
individual coefficients.

A) DO acts as a scaling factor to the plastic strain rate.

It also effects the yield stress in a classical sense.

B) ho and h1 are minimum and maximum values of hardness variable.

ho will mainly determine the yield stress and hi will limit the maximum

achievable stress (actually Jj).

C) m adjusts the growth rate of the hardness variable h with
respect to A.

D) n determines the hardening tendency of the material. We may
obtain a elastic-perfect-plasticity as n » » . Usually n =1
is chosen for the hardening material since the detailed approximation

can also be done through the previous coefficients.
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{
%: Next we explain how to determine those material constants
f: from experimental data. The stress strain curvesin Fig. 4.7 were
) taken from the experiments done by Instron 1125 test machine with
j' pure lead (more than 99%) specimens which have 25 mm gauge length
- with cross-sections size 3.8 mm x 6.5 mm.
An Instron extensometer was used for strain (in fact, the
" total displacement of gauge length) measurement and the load was
E,: recorded as a function of the strain. The crosshead velocities J
o applied were 0.5, 5 and 200 mm/min. which, for an effective over- %
a2 -
. all gauge length of 25 mm, correspond, respectively, to the constant -
P ]
. engineering strain rate of 3.3 x 10 “, 3.3 x 10 3, and 1.33 x 1071, .
respectively. The experimental curves at the lowest and the fastest 4
e rates are chosen to determine the material constants. D
M .
W First we choose n = 1 as a common choice for hardening material. K
M .
‘N Let a uniaxial stress in the experiment be g, i.e. K
,) - |
:Al Ox =0 ,0y=0 , O, =0 (4.69) _
and >
o P
. = =z -9 - =, 9 :‘
Gx 20/3 ’ Oy 3 [} Oz 3 :
T (4.70) ]
L 1.4 1 1 g2
~ B el — = 2 = -
Jo=zlgtgrgle?=3

P
y Ay -
s

'a
.

i g

a &
»

Thus the constitutive equations (4.65) - (4.68) in this state of

Y

stress become simplified as follows:
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REMARK 4.6

X po

S =20 :-D—A(E1+E2+E3)4"S——ZUE,

Elsp—gc-o

h = hi + (ho-hi) exp (-md)

. 2/3Do 2h2
PL= 3 exp (& =50
. 1 -

A= F Opl

definition of yield stress, i.e., about a 0.2% offset strain.

h = ho when yielding starts to occur and two unknowns, ho

lowest strain rate in Fig. 4.7,

(4.71)

(4.72)

(64.73)

(4.74)

To determine the constants ho and DB’ we utilize a conventional

and D _,
o

need be determined, we take two test results at the highest and the

In experiment, the engineering strain is defined by

€ = (L-Lo)/Lb, L = current length and Lo = Initial length.

see section 3.3.2) can be found as:

Total strain = E} + Pz el /L

But the

value of our strain definition in this uniaxial situation (for detail,

: Py and C = 17900 N/mmz, we obtain the following values

Py at onset of yielding.

Since
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Total strain rate Plastic strain rate Cauchy stress |
1.32 x 107! 1.27 x 107! 10.58 N/mm2
3.3x 10°* 3.2 x 107 8.73 N/mm?
Then from this table and (4.72), we have
D, = 1029400 N/mm? sec
h, = 26.73 N/mm?2
To determine h1 and m, we need to calculate h. Taking logarithm
of (4.73) gives
-, 273D 2h2
ln Pl-Zn 3 - Zn h - —01- (4.75)

By using the Newton Raphson scheme, we obtain the variation of h

versus strain as in Fig. 4.8. !
With the computed value h, we are ready to determine hi and m.

First, take time derivative to (4.72).

h = -m(h -h;) exp (-mA)A (4.76)

And then, from (4.72) and (4.76) we obtain

m= -xln(r_—ho) (4.77)
fo)

if and

- ho=h +— (4.78)
o 1 mA
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We compute m and hi by an iterative scheme at several loading

points and get averages.

m=175
h, = 85 N/mm?

Fig. 4.9 shows the experimental and the computed results.
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CHAPTER V

FINITE ELEMENT APPROXIMATION

In this chapter, we solve a boundary value problem with the
constitutive equations introduced in the Section 4.4.6. We limit
ourselves to quasi-static problems involving no body forces and
no temperature dependence. That means we do not solve the energy
equation directly and that the equation of momentum balance in
the reference configuration will be of the form
Vx ? = 9 in C0 (5.1)

where T is the first Piola Kirchhoff stress and

(=9

ef 2_
X 9X .

v

¢

Early accounts of finite element models of elastoplasticity
were reported by ODEN and KUBITZA [1967), MARCAL and KING [1967],
ARGYRIS [1967], and ZIENKIEWICZ et al [1969], and finite defor-
mations were treated by ODEN (1968, 1970, 1972] and others. A
variety of different formulations of the large deformation problem
have been explored, and we mention the incremental Lagrangian
formulation of HIBBIT, MARCAL and RICE {1970}, the updated
Lagrangian scheme,of, e.g., MCMEEKING and RICE {1975], and various

related schemes proposed by NEEDLEMAN {1972}, LARSEN and POPOV

-109-
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(1974], BATHE, RAMM and WILSON [1975], ARGYRIS et al. [1977, 1978],
CESSCOTTO, FREY and FOUNDER [1979] and ATLURI [1980]. Numerous
applications of finite element methods to metal forming problems
can be found in the literature and we mention as examples those in
the papers of LEE, MALLET and YANG [1977], NAGTEGAAL and DeJONG
(1980), KEY, KRIEG and BATHE [1979], ARGYRIS and DOLTINIS (1979,
1980], TAYLOR and BECKER [1983], and KIKUCHI and CHENG [1983]. A
good survey of current theories and numerical methods for finite-
deformation plasticity can be found in the volume edited by
NEMET-NASSER, ASARO, and HEGEMIER, [1984] and in the proceedings
edited by WILLAM [1984]; see also the recent work of SIMO and
MARSDEN [1984], SIMO and ORTIZ [1985], and KIM and ODEN [1985]

and the references therein.

5.1 Formulations

Here we adopt the incremental total Lagrangian formulation,
where the reference configuration is always the initial configuration.
Let q denote a test function which belongs to a set of V admissible
displacement increments. Then a weak form of equation (5.1)

can be written

f“oT : Vq dx = fag TN-q dS, \73 €V (5.2)

-~~~ O~~ -~

where N is the outward normal unit vector in the reference configu-

ration.
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We assume that the equilibrium state is achieved at n-1 th

incremental step, i.e.,

1 fszo?n-fY‘.‘ dx = faszofn-lli’ 1ds, VeV (5.3)
[
- Then at the nth step,
n
,I 'En = .Z A?i - 'En-l * A?n
. i=]
:.
. t =TN=¢& + At
" .n n. n-1 -
i‘
i and
b n
f AT :9q dx = f At -q dS, qu ' (5.4)
Qn o s - R, .n -
0 0
F._' From the definition of the first Piola-Kirchhoff stress and
equations (3.68) and (3.72),
-1
AT = A(JRSU )

= A(MEIE)F T + 2uREUTY)

= M(trAE)F T + 2yRAE U}

- o~ -~

i PP i as e Y S s R A8 Ma® SRl i ~ A b N A AR A AR S b Ae A A
Paiardamudian - AR Al B

Ty .
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+ ACtrE)aF T +2usREUTY 4 2,REAU! (5.5)

»

- By applying the decomposition relation (3.68) and the form (5.5),
b,
t-‘ equation (5.4) becomes
3
&)
F_"

»_': ’

b

p °.

»

P.' .

[
a
&

b

-

3

|

a

.
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n 112
N
n
N
:_'\
-.‘:,:
f (Atr(at D )I-"'T + 2uAt D F 'T]:Vq dx
SZO .n.n Jn.n .-
f -T -1
- Q (A (traP)F + 2u(R AP U )]n:Vq dx
0 - ~ - ~ ~ -~
+ IQ {A(trE)AF"T + 2u(AR E v s RE Au'l)]n:Vq dx
0 -~ -~ ~ - -~ ~ -~ -~ -~ -~
=/ At :q dx Vge€v (5.6)
Wy .0 o . -
Now we apply the tangent stiffness scheme with the idea of
successive approximation during iterations in an incremental step.
We arrive at the following linearized form at the ith iteration
in the nth increment: .
[ Dtrat by + 25 ae DE(F D) hioq ax
Qq .n i n .2 -
= fﬂ [)\(trAP)F_T + 2u(R AP U-l)];-l:Vq dx
0 e ~ o~ o~ - -
- S DermaF T« s @R EUTH 4 R EaUTH I g ax
0 S -~ ~ - -~ < - .
: i i-1,
* fag Atyiq ds - IQ AT, 79 dx, ]
0 0 1
. .
VYagv (5.7) \
. N
£ g
= Here the last integrals on the right hand side of (5.7) is the left- ‘i
. hand side of (5.6) at the i'® jteration and the first two integrals ::
! ]
i p
4 ?
[ g}
3 ]
N 1
F .
1
& 3
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5.2 Finite Element Approximation
"4
41
First we interpolate the functioms Au; and q as follows: .
u1 i {
i a 4
A?n - 9a°a (f)’ Ya ©

W2 )

a
(5.9) ]
o ]
(s} h
~ S¢ (Z‘)’ qa = 2 A
q 1
@ B

-

e

where ¢a(x) is a shape function, we have used the summation

Mo
convention, and u_ = u + LA ul, M being the iteration index. A
.n -n-1 { =P 4
i Then i
4
3dut i 3
i 1 n -1.i-1 -T.i-1 3hu T o
At Pn'f[T(f )n *(f’ )n (-0 )7 ‘j
- 31‘ p
r 11 1 2} ;
= 1
‘ (F1¢8’1+F2¢B’2)uB 2[(F3¢e,1+F4¢B,2)u8¢(Fl¢B’1#F2¢B’2)u8 ! :
2! | (5.10) e
g | 1 2 1 2|
: | 5 [(Flog |+F20, ))ug+(F3gg ,+Fuog | )ug (F3¢B’1+F4¢B’2)u6!
[ - L -
b -
- >
&4 3
k.- 1
K-~ .
. :
- R
- ]
e 3
E
-
&
= B
3
. 3
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of (5.7) are obtained by taking 8P, AR and AU.1 as functions of

U and transferring these to the right-hand side, i.e.,

-

[ S0P i-1 i1
fn ® 340 |n A?n’ Agn

i-1
Note that APn ,» etc. go to zero when the

~

oAU -n

9AR ;i-1

AUl, etc.
n

iteration converges

since P, R , etc. are defined in the following fashion:

n.n

Adding (5.3) to (5.7) gives

i i, -
fQo[xtr(At D) + 2u At D ](F

[ [A(trdP)F T + 2u(R AP
0 - -~ bl -

-T
fQ [A(trE)AF =~ + 2u(4R E
0 - - - -

i i-1
* J'EQOEn: ] ds - f.QOT

T,i-1
)n

tyq dx

-1,,1i-1
U1, o

vl v RE AU'I)]:"1

:Vq dx

Y
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; : “T.i-1 F1 F2 ¢B,l
: [F ]n = and V¢B= » (5.11)
N F3 F4 - 8,2
F1¢8’1 + F2¢8’2 = BA
F3¢8,1 + F&@B,Z = 8B
1 1 1 2.
. BA ug 3 {8B ug + BA ue}\
AtDn = l
- 1 2 1 2
5 {8A ug + 8B uyl 8B v | (5.12) :
To reduce bookkeeping, we note that the terms Ain:1 and (AU'I) fj
- S .

should tend to zero when convergence in each iteration procedure

is achieved. It thus would allow us to delete the second integral

on the right-hand side of (5.8). Then the discretized equations

of (5.8) at each node in nth element would assume the form,

1 1
aA {F1¢ .8A + =(F3¢ ,BB+Fl¢ .B8B)}u
@',a®) fﬂg mwf . Zu[ el 2 el @
{\QB (FZ%JS“ + 3(%%,13342%’283)}\;8
+ (X(F3s .8A + Flg .8A) + F3o BB}uz—ﬁ
2 a,sl a2 a2 8
dx

* (3(F4g_ |8A + F25_ ,8A) + Fis_ ,8B)ul~
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/ alA Clle + C21¢ —]\ <i
= {qlqu} J A(P1 + P2) + a,l avzv \ dx
N

2 aB CIZ%"1 + C22¢a,2!'

(t, + At RSU1°u + RSU3¢

) |
+ J’ ! ! ds —-f ! I i
20 (t, + at,) N Rsuz%’1 + RSUA¢Q’2-}
g QO

(5.13)

(o2 A R = 2 g

N . .
where QO is an nth element and 390 is the side of the element on
which the traction is prescribed. Summations on a and B are

implied. Also,

. R1 Rf] [Pl P3 : Tul u3
-1 i-1 | -1
[RIT = | ,lap) " = 1 () =" = a
- -R3  R2, P3 P2 - Lu3 U2
RP1.U2-RP2.U3-RP1.U3+RP2.U1
=—£p—— = R P
(€] = Fer T » [RP] = [R] [aP]

~ | REP.U2-RP4.U3-RP3.U3+RP4.Ul

RSU1  RSU2| _1
= [R] [S)(U7"]

{1 (31 s3
(s> = , [RSU] =
sy s2 RSU3 RSUQJ
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and g

aA = Fl¢ + F3¢ ]

ST a,l a,2 S

oB = F20,  * F49, , N

’ A

=

J

Again, by setting :

- aC = F3¢u’1 + F1¢a,2 ;

b 3y

‘ 4

Ol oD = F4d | + F29, , .

-~ ’ ’ ¥

. ’1

o equation (5.13) can be reduced to the following set of simultaneous '

equations for each element: b

r 71 1

z aB‘ Ky Klz.] ug Fy ]

81’82""8NN | ) ) j

[f21 f22) s Fa (5.14) p

L}

-

for every a = S LRREL St %

. a

[ ) Here the ai's and Bi's are global node numbers in an element and -
'l{ NN is the number of nodes in each element.

f In global form,

- — -

g ] ; 1, (1 l( 1 ~

- K,,' | Y8 j F '

R I IR

8 :K K. | | P2 ?

ELEM=1 1‘ 221 '

L# s - © (5.15) :
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for every a

where N is the number of elements, ELEM is an element number and

aBK11 = f N{A-QA-BA + 2u-Fl-¢a 1BA + 1+aC+8B} dx i
Q) ’ - J
aBK , = fQN{x-aA-sB + u°F3-9 BB + u-aC-BA}  dx
0

+

aBK,, = [  {A-aB-8a 2u*F2¢, BA + ucaD-BB}  dx

1 2
2,
a8K22 = ];N{A-aB-BB + 2u'F4~¢a,ZBB + peaD-BA} df
0
1
F, = fQN{(A(pl + P,)F1 + C ) - RSU1)¢Q’1 + (\(P] + P,)F,
0
i
+ Cpy = RSUDD, Ddx + [ tle, s
30 'n
o}
2 _
F, = IQN {(A(P1+PZ)F2 +C, Rsuz)%,1 + (A(P| +P,)F4
0
i
+ €,y = RSUGIG, ) dx + j;Q t2 %

o}
REMARK:

i) 1In the first iteration at each incremental step, we impose
the incremental essential boundary conditions: but after the first
iteration, we must impose the zero values.

ii) It is interesting to note that (5.15) reduces to equation
for stiffnesses in linear infinitesimal elasticity upon appropriate

specializaton. In the case of infinitesimal deformation,
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F=1,R=1, 0 =1 ]
Then %
= = 9
ah =0, ) LoB =4, ,,aC =0 ,,aD=0,
BA =

%,1, 88 =4,
Therefore, as expected,

aB
K1 = fQN[(’k Y20, 1951 T MO, 2% 0] %

~

aB
Ki2 = j;N[A¢u,1¢B,1 +Ho, 18g,0) X

af

Kol ’an[Ma,z%,l * ”¢a,1¢8,2] dx

aB
Ky = j;N[(A * 280, %50 tub, 19 1] X

Note that the assembled matrix then becomes symmetric.
In each iteration, the following constitutive routine has to

be solved:

o i i-1
hn = h1 + (hO - hl) exp (-m!\n

) p
:.‘ 1
L Ty
» i S S O | R
. A = 2
By =0t P, 907D !
:
E'i i -1 1 n 3
AEn =AU U |sym o -APi -
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a
a0
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In the actual computation, we subdivide the incremented solution ’

Ay U-llsym by a prescribed number and proceed by using the previous 1

Lo forward Euler method.

'ié Since the previous constitutive equations assume incompres-
sibility in the plastic deformation, care must be taken in choosing
a stable element approximation (see NAGTEGALL, PARKS and RICE

- (1974] and the detailed stability analysis of ODEN et al [1982,
1984]). Here rectangular elements which consist of four 3-node

{-_ triangles; so-called, four constant strain triangles (4CST element)

= issued. A mathematical analysis of this 4CST element can be found

" in KIKUCHI, ODEN, and SONG [1982] and KIKUCHI [1983].

- o

5.3 Numerical Examples

[
eai i

In this section several example problems are solved to verify

the algorithm described above.

The proposed set of constitutive equations (equations (4.65),

= (4.66), (4.67) and (4.68) contains 7 constants to be determined.
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a

from experimental data. The two elastic constants can be determined

T

I}

by standard procedures,but the plastic constants require at least
two uniaxial tests at different strain rates.
Following Bodner and Partom, we consider estimated constants
on Titinium for our constitutive equations, which are similar
to theirs. The material parameters are as follows:
i) Elastic Constants
X = 93667 N/mm? (1 N/mm® = 10° Pa)
U = 44000 N/mm?
ii) Plastic Constants
n=1
- m = 50
D =1.35x 107 sec !
h = 1150 N/mm?

= 1450 N/mm?

=

As a first computational example the homogeneous plane strain
elongaton of a test block is computed. Results are shown in
Fig. 5.1. The computed results reflect up to 20 percent engineering
strain and show strong sensitivity to strain rates. Note that
slower loading results lower yield stress.

A result of loading, unloading and reloading is shown in Fig.

5.2 with a strain rate of 1.5 x 10 3 per second. The so-called
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Figure 5.1 Calculated stress-strain curve for titanium for various
strain rates.
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ratchet effect at yield point in the reloading process is not
apparent because of a large amount of deformation.

In the third example, the variation of the internal state vari-
able with strain is shown in Fig. 5.3. 1In this case, the internal

state variable represents hardness of the material. It is seen to

vary with strain in a way which is qualitatively the same as the
stress-strain relation.

Before solving a complicated plane strain problem, we next
check the algorithm's ability to simulate rotational rigid-body
motions. This is done by fixing a corner of the stressed element
and prescribing the essential boundary conditions at each incremental
step as in TAYLOR and BECKER [1983). Suppose that a block element,
such as that in Fig. 5.4, is subjected to an elasto-plastic defor-
mation according to the following program: We prescribe 0.5 percent

engineering strain with a 0.5 x 1073 per second rate. Next the

* Y ¥ S

block is rotated with prescribed incremental rotation angles while
maintaining the preloaded deformation. The results are listed in

Table 5.1 with increments 9°, 10°, 15°, 30°, and 45° to make 90°

el Bial o

rotation. If the computed stress rates are appropriately objective,
the stress should not change during these rotations. We observe

errors in the stress of only about 0.3 percent and note that there

Ny G P

is little error between a large step size (45°) and a small (9°),
as expected from the way we defined deformation measures and

1
1
rotationally-invariant stresses. %
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Figure 5.3 Variation of the internal state variable vs. strain.
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o 0.5% S, =
strain

[
1}

(a)

322.5 N/mm?
0. N/mm?
0. N/mm?

161.3 N/ mm?

80.7N/ mm?

(b)

Figure 5.4 Calculated rigid body motion with 30°
a) loading before rotation
b) progressive configurations
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Table 5.1 Dienes Stress Versus Incremental Rotation Angle
Stress
S S

Increment X y Xy

g0 323.4 0.6 0.2

10° 323.3 0.9 -0.1

15° 323.6 1.9 0.1

300 323.7 0.4 0.1

450 323.5 0.1 ~0.2
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The final example is a head forming problem in plane strain.

A 4 by 5 unit rectangular billet, which is confined at the lower
boundary is loaded at the upper part without friction. Incremental
displacements are prescribed at the five nodes in the top of the
billet. Computed, progressive deformed shapes, and J2 stress
contours are shown inFigs. (5.6) and (5.7). Figs. (5.5) and (5.8)
show the undeformed and the deformed Lagrangian finite element mesh.

The residual J, stress contour is shown in the left part of the

2
deformed configuration.

Throughout the finite element computations, the convergence
at each incremental step was checked by calculating the maximum
relative error of successive incremented displacements. The
relative error is computed as the ratio of the correction between
iterations to the first solutions (incremental displacements) of
the incremental step. A range of tolerances was set as 0.01-1
percent, depending on step size. Generally, the convergence was

achieved in two iterations except where severe changes in the

deformation from elastic to plastic states are experienced.
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CHAPTER VI

CONCLUDING REMARKS

6.1 General

The classical theory of plasticity evolved from simple obser-

vations that irrecoverable deformations of many materials may

result from a simple load cycle. Characteristic of the classical

- theory and the developments which arose from it over the last
b
iu‘ half-century are notions of yield surfaces, hardening laws, and
N a rather simple kinematics in which the total strain is the sum -
&

of so-called elastic and plastic parts. Frequently in modern

engineering and manufacturing, situations are encountered in which
a more sophisticated constitutive theory and kinematics is needed I
to describe elastoplastic behavior. This need, and also the

natural evolution of plasticity theory as a part of mechanics,
has led to some fundamental questions of the mechanical and math- i

ematical foundations of plasticity. For example, how does one {

develop a theory of elastoplasticity within the framework of

modern continuum thermomechanics? How does one obtain a set of
constitutive equations which are valid for wide ranges of defor-
mations? What are the deficiencies of existing kinematical measures

and is it possible to devise new kinematical measures appropriate

-134-
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for finite elastoplastic deformation? Can such general theory

be put to use to model practical problems and is it possible to
devise numerical schemes for implementation of such a broad theory?
In this report, an attempt is made to resolve some of these

questions. Some success in each area of inquiry has been

attained.

6.2 Summary of Results

According to the general aim of this report, the following

specific results were obtained.

-l - 1. Materials of Type N

A new and general theory of finite elastoplasticity has been
developed which has the following features:

a. Involves two potential functionals, one being the
free energy functional ¢ and the other the general
flow potential ¥y.

b. Does not necessarily require the specification of
a yield surface.

c. Does not require that y be either convex or differ-
entiable.

d. Involves an internal state variable a.

~

e. Reduces to classical theories as special cases.
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f. Is not exclusively a rate-type theory, as the history
of microstructural changes is governed by an evolution
equation for a.
The material characterized by these features is referred to

as a "materials of type N'" since the framework generalizes the

notion of normality in plasticity.

2. Kinematics of Finite Elastoplasticity

A new kinematical description of notion, valid for finite
elastic and plastic deformation and which differs from the theories
of Lee and Nemat-Nasser has been derived. Its features are as
follows:

a. The effects of rotation are separated from pure
stretching.

b. Formalizes the fact that the position vector (or
displacement vector) in the intermediate configuration
may not be continuous.

c. Results in a correct decomposition of deformation

rate into an "elastic" and a "plastic" part.

3. Continuum Thermomechanics and Analysis

a. Analysis via Coleman-Noll thermodynamic methods are
used to deduce restrictions on the constitutive

equations.
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dcbulled Bdndentcdeded

L

b. It has been shown that the theory results in a fully-

determined system of equations governing the thermo-

o

mechanical behavior of materials of type N. ?

L

c. Isotropic representations of flow potential and the A

\{

free energy for the elastoplastic material of 1
materials of type N has been developed and studied.

Ai

1

4. Examples of Materials of Type N R

;

a. Classical plasticity theories are shown to be special 5

simple cases of a materials of type N.
]
b. An analyses of some newly developed constitutive 4

equations, which do not involve yield functions, is
given,

c. Existing constitutive equations for various plasticity
theories can be shown to fit within the theory of

materials of type N upon appropriate modification.

5. Finite Element Computations

a. Chooses a modified version of the Bodner and Partom
s equations for finite element approximation.

b. Numerical algorithms and a code are developed for

solving a total Lagrangian formulation of the general

| @
[' theory.
L -
! c. A test problem of rotation of a prestressed block i
1 and head forming problem are solved. i
e L
1 -
{ A
S ]
2 !
! 0
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6.3 Future Research

a

1. Further study is needed to verify that other useful
constitutive equations, e.g., by HART [1970, 1976], by MILLER
[1976) and anisotropic version of BODNER [1985], can be recast
in a form covered by the theory of materials of type N. It is
anticipated that such modifications are possible and their con-

struction would be very helpful,

2. To predict the useful lifetime or realibility of perfor-
mance of engineering material, failure or damage accumulation laws
need to be developed. It is expected that it may be possible to
incorporate these effects in a theory through the introduction of
appropriate internal state variables. One possible example of

this may be the work by LEMAITRE [1984].

3. Further development of a modular computer code is needed
which can simulate morerealistic problems and may include temper-
ature effects and appropriate frictional contact conditions,

possibly, in a three-dimensional setting.
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APPENDIX

ELEMENTS OF CONVEX ANALYSIS

We shall provide here a brief summary of some of the concepts
of convex optimization theory which are prerequisite to the ideas
described in the body of the report. For more detailed
accounts, the books of EKELAND and TEMAN [1976] or ROCKAFELLAR
{1970, 1979] or the recent text of ODEN ([1985] can be consulted.

We begin by introducing the following notations:

IR = the extended real numbers; if IR is the real number

system, R = RU {t=}

U,V = topological vector spaces

U*,V* = topological dual spaces of U and V respectively
(.,.)V, <"'>U = duality pairing on V* x V and U* x U,
respectivély; i.e. if v*¥ € V* and v € V, then v*(v) =

(v*,v)v, etc.

It is worthwhile to recall the definition of the limit-superior

(1im sup) and the l!imit-inferior (lim inf) of sequences of real

LS

numbers, extended real-valued functions of sequences, and sequences

s TV
AR

r_w“vj{,.- Giaces
oW

e

of sets in a topological vector space V. 1
Lim sup/eim ink., ]

* For {an} a sequence of real numbers
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lim sup a, = inf sup a W

n+o N € N n>N
(A.1)
lim inf a_ = sup inf a
n n
n+ N €D N
.« For f: R+ R N y
lim sup f(x') = inf sup f(x') 4
x'+ x 6>0 0<|x'-x|<s ! :
. (A.2) y
lim inf f(x') = sup inf f(x') :
x' +x 6>0 0<[x'-x|<s J j
| + For {An} a sequence of subsets of the underlying set of .
= N
E ) topological space V, .
h e a 1
lim sup A = /ﬁ\ (\‘/An) . !
- n +w m=l n=m
- (A.3)
L' o ®
- lim inf A =\V/ (/A\Am)
n + o m=1 n=m

For example, if {xn} is a sequence of real numbers which converges

to x and f : IR, LIM SUP f(xn) is the supremum of all cluster

points of f at x, as indicated in Fig. A.1 (with an analogous

interpretation for lim inf).

The concept can also be applied to multifunctions from one

topological vector space to another. Indeed, if T': U+ V (with

(u) a subset of V for each vector u € U), then
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lim sup f(x')
x'—>x°

1
1
|
¢
|
|
lim inf f(x) —
x'-»xo /

ekl

henail oo e s

W VI

Figure A.l1. Limit superior, limit inferior of discontinuous
function f: R » R at Xy -
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(A.4)
/\
lim sup T(u') = /) FN I\U cwh )
u' *u A €N(O) B E€EN(u) u'€ B
and | (A.5)
lim sup T(u') = /ﬁ\ \1/ /ﬂ\ (T(u") + 4a))
u' ~u AEN(D) BEN(u) u'€sB

where N(0) and N(u) are collections of neighborhoods of 0,u,

respectively.

Lim sup <nf/Liam inf sup

In addition to the notion of limit superior and limit inferior,
it is convenient to introduce the concepts of lim sup inf and lim
inf sup introduced by ROCKAFELLAR {1980].

Let F be an extended real-valued function from U x V into ﬁ,

let ' »uin U and v'* v in V. Then we define

(A.6)
Lim sup inf F(u'v') £ sup inf sup inf F(u',v")
u' *u,v'* v BE€M(v) A€N(u) u' A V'EB
Likewise,
A (A.7)
Lim inf sup F(u',v') = inf sup inf sup F(u',v'")
u' +u,v'> v BE (v) A N(u) u'€Av'€EB

Similarly, Lim supsup and Lim inf inf can be defined in an analogous
way.

The meaning of these operations can be more easily understood
in the case of a real-valued function F defined on ]R2 , such as

the discontinuity at the origin shown in Fig. A.2. To compute
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Figure A.2. A function F discontinuous at the origin 0:
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Lim inf inf F(x',y), for example, we compute lim inf F(x',y) for
x' +0,y'" »0 x' - 0

a fixed y'. This gives the a function of y' which has as its graph

the curve ACU EH. The lim inf of this function is the point E,
y'= 0

denoted Fl in the figure. Similarly liT sug F(x',y') for fixed y',
X

is the curve, ﬁb\J BA and lim inf of this curve is the point D,

y'= 0
denoted F2 in the figure. In summary for this example,
Lim inf inf F(x',y') = F

x'+ 0y'+ 0 !

|
&)

Lim sup inf F(x',y') = 2
x'+ 0y'~ 0

]
3

Lim inf sup F(x',y") 3
x'* 0y'> 0

H
]

Lim sup sup F(x',y') 4
x'* 0y'* O
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